2-ADIC INTEGRAL CANONICAL MODELS

被引:50
作者
Kim, Wansu [1 ]
Pera, Keerthi Madapusi [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
P-DIVISIBLE GROUPS;
D O I
10.1017/fms.2016.23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Lau's classification of 2-divisible groups using Dieudonne displays to construct integral canonical models for Shimura varieties of abelian type at 2-adic places where the level is hyperspecial.
引用
收藏
页数:34
相关论文
共 29 条
[1]   On the Shafarevich and Tate conjectures for hyperkahler varieties [J].
Andre, Y .
MATHEMATISCHE ANNALEN, 1996, 305 (02) :205-248
[2]  
Andreatta F., 2015, PREPRINT
[3]  
[Anonymous], 2001, PROG MATH
[4]  
ARTIN M, 1974, ANN SCI ECOLE NORM S, V7, P543
[5]  
BERTHELOT P, 1982, LECT NOTES MATH, V930, pR3
[6]  
Blasius D., 1994, P S PURE MATH, V55, P293
[7]  
BLOCH S, 1986, PUBL MATH-PARIS, P107
[8]   The Tate conjecture for K3 surfaces over finite fields [J].
Charles, Francois .
INVENTIONES MATHEMATICAE, 2013, 194 (01) :119-145
[9]  
Deligne P., 1977, P S PURE MATH 2, P247
[10]   Integral crystalline cohomology over very ramified valuation rings [J].
Faltings, G .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :117-144