Modulation of Thermal Conductivity in Kinked Silicon Nanowires: Phonon Interchanging and Pinching Effects

被引:63
作者
Jiang, Jin-Wu [1 ]
Yang, Nuo [2 ]
Wang, Bing-Shen [3 ,4 ]
Rabczuk, Timon [1 ]
机构
[1] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[2] Tongji Univ, Sch Phys Sci & Engn, Ctr Phonon & Thermal Energy Sci, Shanghai 200092, Peoples R China
[3] Chinese Acad Sci, State Key Lab Semicond Superlattice & Microstruct, Beijing 100083, Peoples R China
[4] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinked silicon nanowire; thermal conductivity; phonon pinching effect; phonon localization; SEMICONDUCTOR NANOWIRE; SPATIAL CONFINEMENT; ACOUSTIC PHONONS; QUANTUM WIRES; DYNAMICS; KINKING; GROWTH;
D O I
10.1021/nl400127q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We perform molecular dynamics simulations to investigate the reduction of the thermal conductivity by kinks in silicon nanowires. The reduction percentage can be as high as 70% at room temperature. The temperature dependence of the reduction is also calculated. By calculating phonon polarization vectors, two mechanisms are found to be responsible for the reduced thermal conductivity: (1) the interchanging effect between the longitudinal and transverse phonon modes and (2) the pinching effect, that is, a new type of localization, for the twisting and transverse phonon modes in the kinked silicon nanowires. Our work demonstrates that the phonon interchanging and pinching effects, induced by kinking, are brand-new and effective ways in modulating heat transfer in nanowires, which enables the kinked silicon nanowires to be a promising candidate for thermoelectric materials.
引用
收藏
页码:1670 / 1674
页数:5
相关论文
共 47 条
  • [1] Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well
    Balandin, A
    Wang, KL
    [J]. PHYSICAL REVIEW B, 1998, 58 (03): : 1544 - 1549
  • [2] Vibrations and thermal transport in nanocrystalline silicon
    Bodapati, Arun
    Schelling, Patrick K.
    Phillpot, Simon R.
    Keblinski, Pawel
    [J]. PHYSICAL REVIEW B, 2006, 74 (24)
  • [3] Silicon nanowires as efficient thermoelectric materials
    Boukai, Akram I.
    Bunimovich, Yuri
    Tahir-Kheli, Jamil
    Yu, Jen-Kan
    Goddard, William A., III
    Heath, James R.
    [J]. NATURE, 2008, 451 (7175) : 168 - 171
  • [4] Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles
    Chen, Huan
    Wang, Hui
    Zhang, Xiao-Hong
    Lee, Chun-Sing
    Lee, Shuit-Tong
    [J]. NANO LETTERS, 2010, 10 (03) : 864 - 868
  • [5] Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes
    Chen, Jie
    Zhang, Gang
    Li, Baowen
    [J]. NANO LETTERS, 2010, 10 (10) : 3978 - 3983
  • [6] Growth, Defect Formation, and Morphology Control of Germanium-Silicon Semiconductor Nanowire Heterostructures
    Dayeh, Shadi A.
    Wang, Jian
    Li, Nan
    Huang, Jian Yu
    Gin, Aaron V.
    Picraux, S. Thomas
    [J]. NANO LETTERS, 2011, 11 (10) : 4200 - 4206
  • [7] Enhanced thermoelectric performance of rough silicon nanowires
    Hochbaum, Allon I.
    Chen, Renkun
    Delgado, Raul Diaz
    Liang, Wenjie
    Garnett, Erik C.
    Najarian, Mark
    Majumdar, Arun
    Yang, Peidong
    [J]. NATURE, 2008, 451 (7175) : 163 - U5
  • [8] CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS
    HOOVER, WG
    [J]. PHYSICAL REVIEW A, 1985, 31 (03): : 1695 - 1697
  • [9] Minimum thermal conductance in graphene and boron nitride superlattice
    Jiang, Jin-Wu
    Wang, Jian-Sheng
    Wang, Bing-Shen
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (04)
  • [10] Molecular dynamics simulation for heat transport in thin diamond nanowires
    Jiang, Jin-Wu
    Wang, Bing-Shen
    Wang, Jian-Sheng
    [J]. PHYSICAL REVIEW B, 2011, 83 (23)