Finite-time stabilization for a class of stochastic high-order nonlinear systems

被引:0
作者
Zhai, Junyong [1 ]
Jia, Ruting [2 ]
机构
[1] Southeast Univ, Sch Automat, Key Lab Measurement & Control CSE, MoE, Nanjing 210096, Jiangsu, Peoples R China
[2] McNeese State Univ, Dept Elect Engn & Comp Sci, Lake Charles, LA 70605 USA
来源
2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA) | 2014年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Adding one power integrator; homogeneous domination approach; stochastic nonlinear systems; OUTPUT-FEEDBACK STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the problem of global finite-time output feedback stabilization in probability for a class of stochastic high-order nonlinear systems. A homogeneous observer and controller are constructed for the nominal system based on the stochastic Lyapunov theorem and the adding one power integrator technique. Then, a scaling gain is introduced into the homogenous observer and controller to render the closed-loop system to be globally finite-time stable in probability. A simulation example is given to illustrate the effectiveness of the proposed design scheme.
引用
收藏
页码:1635 / 1640
页数:6
相关论文
共 22 条
  • [11] Decentralised output-feedback control for high-order stochastic non-linear systems
    Li, W.
    Wei, X.
    Zhang, S.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (06) : 838 - 846
  • [12] OUTPUT-FEEDBACK STABILIZATION OF STOCHASTIC HIGH-ORDER NONLINEAR SYSTEMS UNDER WEAKER CONDITIONS
    Li, Wuquan
    Xie, Xue-Jun
    Zhang, Siying
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (03) : 1262 - 1282
  • [13] Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems
    Liu, Shu-Jun
    Jiang, Zhong-Ping
    Zhang, Ji-Feng
    [J]. AUTOMATICA, 2008, 44 (08) : 1944 - 1957
  • [14] Mao X., 2007, Stochastic Differential Equations and Applications, V2nd, DOI DOI 10.1533/9780857099402
  • [15] Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion
    Pan, ZG
    Basar, T
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (03) : 957 - 995
  • [16] A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems
    Qian, CJ
    [J]. ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 4708 - 4715
  • [17] Global Finite-Time Observers for Lipschitz Nonlinear Systems
    Shen, Yanjun
    Huang, Yuehua
    Gu, Jason
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (02) : 418 - 424
  • [18] Skorokhod A. V., 1982, Studies in the theory of random process
  • [19] A UNIVERSAL CONSTRUCTION OF ARTSTEIN THEOREM ON NONLINEAR STABILIZATION
    SONTAG, ED
    [J]. SYSTEMS & CONTROL LETTERS, 1989, 13 (02) : 117 - 123
  • [20] Output feedback control for a class of stochastic high-order nonlinear systems with time-varying delays
    Zha, Wenting
    Zhai, Junyong
    Fei, Shumin
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (16) : 2243 - 2260