Finite-time stabilization for a class of stochastic high-order nonlinear systems

被引:0
作者
Zhai, Junyong [1 ]
Jia, Ruting [2 ]
机构
[1] Southeast Univ, Sch Automat, Key Lab Measurement & Control CSE, MoE, Nanjing 210096, Jiangsu, Peoples R China
[2] McNeese State Univ, Dept Elect Engn & Comp Sci, Lake Charles, LA 70605 USA
来源
2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA) | 2014年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Adding one power integrator; homogeneous domination approach; stochastic nonlinear systems; OUTPUT-FEEDBACK STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the problem of global finite-time output feedback stabilization in probability for a class of stochastic high-order nonlinear systems. A homogeneous observer and controller are constructed for the nominal system based on the stochastic Lyapunov theorem and the adding one power integrator technique. Then, a scaling gain is introduced into the homogenous observer and controller to render the closed-loop system to be globally finite-time stable in probability. A simulation example is given to illustrate the effectiveness of the proposed design scheme.
引用
收藏
页码:1635 / 1640
页数:6
相关论文
共 22 条
  • [1] BACCIOTTI A., 2005, Liapunov Functions and Stability in Control Theory, V2nd
  • [2] Continuous finite-time stabilization of the translational and rotational double integrators
    Bhat, SP
    Bernstein, DS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) : 678 - 682
  • [3] Output-feedback stochastic nonlinear stabilization
    Deng, H
    Krstic, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (02) : 328 - 333
  • [4] Stabilization of stochastic nonlinear systems driven by noise of unknown covariance
    Deng, H.
    Krstić, M.
    Williams, R.J.
    [J]. 1600, Institute of Electrical and Electronics Engineers Inc. (46):
  • [5] A UNIVERSAL FORMULA FOR THE STABILIZATION OF CONTROL STOCHASTIC DIFFERENTIAL-EQUATIONS
    FLORCHINGER, P
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1993, 11 (02) : 155 - 162
  • [6] LYAPUNOV-LIKE TECHNIQUES FOR STOCHASTIC STABILITY
    FLORCHINGER, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (04) : 1151 - 1169
  • [7] On an output feedback finite-time stabilization problem
    Hong, YR
    Huang, J
    Xu, YS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) : 305 - 309
  • [8] Global finite-time stabilization of a class of uncertain nonlinear systems
    Huang, XQ
    Lin, W
    Yang, B
    [J]. AUTOMATICA, 2005, 41 (05) : 881 - 888
  • [9] Finite-time stabilization of stochastic nonlinear systems in strict-feedback form
    Khoo, Suiyang
    Yin, Juliang
    Man, Zhihong
    Yu, Xinghuo
    [J]. AUTOMATICA, 2013, 49 (05) : 1403 - 1410
  • [10] Global finite-time stabilisation by output feedback for a class of uncertain nonlinear systems
    Li, Ji
    Qian, Chunjiang
    Ding, Shihong
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (11) : 2241 - 2252