Accelerating photonic computing by bandwidth enhancement of a time-delay reservoir

被引:22
作者
Estebanez, Irene [1 ]
Schwind, Janek [1 ,2 ]
Fischer, Ingo [1 ]
Argyris, Apostolos [1 ]
机构
[1] CSIC UIB, Inst Fis Interdisciplinar & Sistemas Complejos IF, Campus UIB, Palma De Mallorca 07122, Spain
[2] Univ Munster, Inst Appl Phys, D-48149 Munster, Germany
关键词
bandwidth enhancement; optical feedback; optical injection; photonic reservoir computing; semiconductor lasers; OPTICAL FEEDBACK; SEMICONDUCTOR-LASERS; MODULATION BANDWIDTH; NOISE; COMPENSATION; NONLINEARITY; DISPERSION; ANALOG; CHAOS;
D O I
10.1515/nanoph-2020-0184
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconductor lasers (SLs) that are subject to delayed optical feedback and external optical injection have been demonstrated to perform information processing using the photonic reservoir computing paradigm. Optical injection or optical feedback can under some conditions induce bandwidth-enhanced operation, expanding their modulation response up to several tens of GHz. However, these conditions may not always result in the best performance for computational tasks, since the dynamical and nonlinear properties of the reservoir might change as well. Here we show that by using strong optical injection we can obtain an increased frequency response and a significant acceleration in the information processing capability of this nonlinear system, without loss of performance. Specifically, we demonstrate numerically that the sampling time of the photonic reservoir can be as small as 12 ps while preserving the same computational performance when compared to a much slower sampling rate. We also show that strong optical injection expands the reservoir's operating conditions for which we obtain improved task performance. The latter is validated experimentally for larger sampling times of 100 ps. The above attributes are demonstrated in a coherent optical communication decoding task.
引用
收藏
页码:4163 / 4171
页数:9
相关论文
共 43 条
[1]  
[Anonymous], 2010, FIBRE OPTIC COMMUNIC
[2]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[3]   Constructing optimized binary masks for reservoir computing with delay systems [J].
Appeltant, Lennert ;
Van der Sande, Guy ;
Danckaert, Jan ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2014, 4
[4]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[5]   Photonic integrated device for chaos applications in communications [J].
Argyris, A. ;
Hamacher, M. ;
Chlouverakis, K. E. ;
Bogris, A. ;
Syvridis, D. .
PHYSICAL REVIEW LETTERS, 2008, 100 (19)
[6]   PAM-4 Transmission at 1550 nm Using Photonic Reservoir Computing Post-Processing [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
IEEE ACCESS, 2019, 7 :37017-37025
[7]   Photonic machine learning implementation for signal recovery in optical communications [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2018, 8
[8]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[9]   Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback [J].
Bueno, Julian ;
Brunner, Daniel ;
Soriano, Miguel C. ;
Fischer, Ingo .
OPTICS EXPRESS, 2017, 25 (03) :2401-2412
[10]   Hurst exponents and cyclic scenarios in a photonic integrated circuit [J].
Chlouverakis, Konstantinos E. ;
Argyris, Apostolos ;
Bogris, Adonis ;
Syvridis, Dimitris .
PHYSICAL REVIEW E, 2008, 78 (06)