Some New Results on Preconditioned Generalized Mixed-Type Splitting Iterative Methods

被引:0
作者
Wang, Guangbin [1 ]
Tan, Fuping [2 ]
Zhang, Yuncui [3 ]
机构
[1] Qingdao Agr Univ, Dept Math, Qingdao, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[3] Qingdao Univ Sci & Technol, Dept Math, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Preconditioning; GAITS method; linear system; convergence; comparison;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present three preconditioned generalized mixed-type splitting (GMTS) methods for solving the weighted linear least square problem. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GMTS methods converge faster than the GMTS method whenever the GMTS method is convergent. Finally, we give two numerical examples to confirm our theoretical results.
引用
收藏
页码:553 / 561
页数:9
相关论文
共 9 条
[1]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[2]   Preconditioned generalized mixed-type splitting iterative method for solving weighted least-squares problems [J].
Beik, Fatemeh Panjeh Ali ;
Shams, Nafiseh Nasseri .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (05) :944-963
[3]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[4]  
Searle S.R., 1992, VARIANCE COMPONENTS
[5]  
VARGA RS, 2000, SPR S COMP, V27, P1, DOI 10.1007/978-3-642-05156-2
[6]  
Woznicki Z.I., 2001, ELECTRON J LINEAR AL, V8, P53
[7]   Convergence of the generalized AOR method [J].
Yuan, JY ;
Jin, XQ .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (01) :35-46
[9]   Preconditioned GAOR methods for solving weighted linear least squares problems [J].
Zhou, Xiaoxia ;
Song, Yongzhong ;
Wang, Li ;
Liu, Qingsheng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) :242-249