EVALUATION OF SIMILARITY MEASURE METHODS FOR HYPERSPECTRAL REMOTE SENSING DATA

被引:5
|
作者
Zhang, Junzhe [1 ]
Zhu, Wenquan [1 ]
Wang, Lingli [1 ]
Jiang, Nan [1 ]
机构
[1] Beijing Normal Univ, Coll Resources Sci & Technol, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
hyperspectral image; similarity measure; discrimination degree; clustering; classification; Hyperion;
D O I
10.1109/IGARSS.2012.6351701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Taking the standard vegetation spectral library data and the hyperspectral Hyperion remote sensing image, five similarity measure methods (i.e., Euclidean distance, spectral information divergence, spectral angle cosine, spectral correlation coefficient and spectral angle cosine-Euclidean distance) are comprehensively evaluated under a unified testing framework. The results indicate that the spectral angle cosine-Euclidean distance method demonstrates the most superior ability to distinguish various land cover types among five methods because it fully utilizes both the spectral amplitude and shape feature in the hyperspectral data. A combination of the spectral amplitude-sensitive method and the shape-sensitive method will effectively improve the identification accuracy of different land cover types. These evaluation results can be used to guide the selection of an optimal similarity measure method for automatic classification with hyperspectral data.
引用
收藏
页码:4138 / 4141
页数:4
相关论文
共 50 条
  • [1] Study on spectral similarity measure in hyperspectral remote sensing data
    Du, PJ
    Chen, YH
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 268 - 271
  • [2] Hyperspectral remote sensing image retrieval based on spectral similarity measure
    Du, PJ
    Chen, YH
    Tang, H
    Fang, T
    REMOTE SENSING AND SPACE TECHNOLOGY FOR MULTIDISCIPLINARY RESEARCH AND APPLICATIONS, 2006, 6199
  • [3] Wavelet-based feature extraction and similarity measure in hyperspectral remote sensing
    Zhang, Wei
    Du, Peijun
    GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [4] A SIMILARITY EVALUATION MODAL FOR REMOTE SENSING DATA DISTRIBUTION
    Yang, Xiaoxia
    Zhou, Yan
    Hao, Lina
    Liu, Xi
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2933 - 2936
  • [5] Selection Strategy of Classification Methods for Hyperspectral Remote Sensing Data
    Shang, Kun
    Xiao, Chenchao
    Wei, Hongyan
    Xie, Yisong
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,
  • [6] The spectral similarity scale and its application to the classification of hyperspectral remote sensing data
    Sweet, JN
    2003 IEEE WORKSHOP ON ADVANCES IN TECHNIQUES FOR ANALYSIS OF REMOTELY SENSED DATA, 2004, : 92 - 99
  • [7] Evaluation of kernels for multiclass classification of hyperspectral remote sensing data
    Fauvel, Mathieu
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 2061 - 2064
  • [8] An evaluation of wavelet-denoised hyperspectral data for remote sensing
    Othman, Hisham
    Qian, Shen-En
    CANADIAN JOURNAL OF REMOTE SENSING, 2008, 34 : S59 - S67
  • [9] General and specific methods studying on bands selection of hyperspectral remote sensing data
    Zheng, W
    Xia, Z
    Bing, Z
    Li, X
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 3223 - 3226
  • [10] HYPERSPECTRAL REMOTE SENSING DATA COMPRESSION AND PROTECTION
    Gashnikov, M. V.
    Glumov, N. I.
    Kuznetsov, A. V.
    Mitekin, V. A.
    Myasnikov, V. V.
    Sergeev, V. V.
    COMPUTER OPTICS, 2016, 40 (05) : 689 - 712