Sampling almost-periodic functions with random probes of finite density

被引:3
作者
Collet, P
机构
[1] Centre de Physique Théorique, Laboratoire CNRS UPR 14, Ecole Polytechnique
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1996年 / 452卷 / 1953期
关键词
D O I
10.1098/rspa.1996.0121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the problem of reconstructing a function given its values on a set of points with finite density. We prove that with probability one, the values of an almost-periodic function on a random array of points (with finite density) completely determine the function. We also give some properties of the associated Blaschke product.
引用
收藏
页码:2263 / 2277
页数:15
相关论文
共 15 条
[1]  
Besicovitch A.S., 1932, ALMOST PERIODIC FUNC
[2]  
COCKBURN B, 1995, DETERMINING DEGREES
[3]   THERMODYNAMIC LIMIT OF THE GINZBURG-LANDAU EQUATIONS [J].
COLLET, P .
NONLINEARITY, 1994, 7 (04) :1175-1190
[4]  
COLLET P, 1994, NATO ADV SCI INST SE, V437, P97
[5]   SPACE-TIME BEHAVIOR IN PROBLEMS OF HYDRODYNAMIC TYPE - A CASE-STUDY [J].
COLLET, P ;
ECKMANN, JP .
NONLINEARITY, 1992, 5 (06) :1265-1302
[6]  
COLLET P, 1996, UNPUB
[7]  
Favard J., 1933, LECONS FONCTIONS PRE
[8]  
Garnett JB., 2007, Bounded Analytic Functions
[9]  
Hardy G. H., 1961, INTRO THEORY NUMBERS
[10]  
Harten AV, 1991, J NONLIN SCI, V1, P397, DOI DOI 10.1007/BF02429847