Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene

被引:17
作者
Cho, Hyunjin [1 ,2 ]
Lee, Changhyup [1 ]
Oh, In Seoup [1 ]
Park, Sungchan [1 ,3 ]
Kim, Hwan Chul [2 ]
Kim, Myung Jong [1 ]
机构
[1] Korea Inst Sci & Technol, Soft Innovat Mat Res Ctr, Jeonbuk 565905, South Korea
[2] Chonbuk Natl Univ, Dept Organ Mat & Fiber Engn, Jeonju 561756, South Korea
[3] Chonbuk Natl Univ, Dept Mat Sci & Engn, Jeonju 561756, South Korea
关键词
graphene; synthesis; methanol; low pressure chemical vapor deposition; large area; SINGLE; COPPER; FILMS; GRAPHITE;
D O I
10.5714/CL.2012.13.4.205
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 31 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[4]  
Dai HJ, 2001, TOP APPL PHYS, V80, P29
[5]   Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure [J].
Dong, Xiaochen ;
Wang, Peng ;
Fang, Wenjing ;
Su, Ching-Yuan ;
Chen, Yu-Hsin ;
Li, Lain-Jong ;
Huang, Wei ;
Chen, Peng .
CARBON, 2011, 49 (11) :3672-3678
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors [J].
Guermoune, Abdeladim ;
Chari, Tarun ;
Popescu, Filip ;
Sabri, Shadi S. ;
Guillemette, Jonathan ;
Skulason, Helgi S. ;
Szkopek, Thomas ;
Siaj, Mohamed .
CARBON, 2011, 49 (13) :4204-4210
[9]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[10]   Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review [J].
Jang, B. Z. ;
Zhamu, A. .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (15) :5092-5101