Approximate Solution for Fourth Order Linear Fuzzy Initial Value Problem

被引:1
|
作者
Jameel, A. F. [1 ]
Ismail, A. I. Md. [1 ]
Ghoreishi, M. [1 ]
机构
[1] Univ Sci Malaysia, Sch Math Sci, Usm 11800, Penang, Malaysia
来源
INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012) | 2012年 / 1482卷
关键词
Fuzzy numbers; Fuzzy differential equations; Adomian decomposition method; DECOMPOSITION METHOD; DIFFERENTIAL-EQUATIONS; ADOMIAN METHOD; CONVERGENCE;
D O I
10.1063/1.4757484
中图分类号
O59 [应用物理学];
学科分类号
摘要
We employ the Adomian decomposition method to solve a high order linear fuzzy initial value problem involving ordinary differential equations. The Adomian decomposition method can be used for solving 4th order fuzzy differential equations directly without reduction to first order system. We illustrate the method in numerical experiment and compare the result with linear k-step methods.
引用
收藏
页码:302 / 308
页数:7
相关论文
共 50 条
  • [1] Analysis on determining the solution of fourth-order fuzzy initial value problem with Laplace operator
    Akram, Muhammad
    Ihsan, Tayyaba
    Allahviranloo, Tofigh
    Al-Shamiri, Mohammed M. Ali
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 11868 - 11902
  • [2] Approximate analytical solution of fourth order boundary value problems
    Waleed Al-Hayani
    Luis Casasús
    Numerical Algorithms, 2005, 40 : 67 - 78
  • [3] Approximate analytical solution of fourth order boundary value problems
    Al-Hayani, W
    Casasús, L
    NUMERICAL ALGORITHMS, 2005, 40 (01) : 67 - 78
  • [4] Fuzzy initial value problem for Nth-order linear differential equations
    Buckley, JJ
    Feuring, T
    FUZZY SETS AND SYSTEMS, 2001, 121 (02) : 247 - 255
  • [5] An algorithm for the solution of second order fuzzy initial value problems
    Akin, O.
    Khaniyev, T.
    Oruc, O.
    Turksen, I. B.
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (03) : 953 - 957
  • [6] Fuzzy approximate solutions of second-order fuzzy linear boundary value problems
    Guo, Xiaobin
    Shang, Dequan
    Lu, Xiaoquan
    BOUNDARY VALUE PROBLEMS, 2013,
  • [7] Numerical solution of n'th order fuzzy initial value problems by six stages
    Jameel, Ali
    Anakira, N. R.
    Alomari, A. K.
    Hashim, Ishak
    Shakhatreh, M. A.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 627 - 640
  • [8] An approximate solution to an initial boundary value problem: Rakib-Sivashinsky equation
    Rebelo, Paulo Jorge
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (07) : 881 - 889
  • [9] Numerical solution of bipolar fuzzy initial value problem
    Saqib, Muhammad
    Akram, Muhammad
    Bashir, Shahida
    Allahviranloo, Tofigh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (01) : 1309 - 1341
  • [10] An approximate solution to an initial boundary value problem to the one-dimensional Kuramoto-Sivashinsky equation
    Rebelo, Paulo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (06) : 874 - 881