The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution

被引:64
作者
Estep, M. C. [1 ]
DeBarry, J. D. [1 ]
Bennetzen, J. L. [1 ]
机构
[1] Univ Georgia, Dept Genet, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
DNA amplification; genome size variation; polyploidy; repetitive DNA; sample sequence analysis; transposable elements; GENOME SIZE VARIATION; NUCLEAR-DNA CONTENT; MAIZE; SORGHUM; DIVERGENCE; GENES; POLYPLOIDIZATION; REARRANGEMENT; RECOMBINATION; AMPLIFICATION;
D O I
10.1038/hdy.2012.99
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Sample sequence analysis was employed to investigate the repetitive DNAs that were most responsible for the evolved variation in genome content across seven panicoid grasses with >5-fold variation in genome size and different histories of polyploidy. In all cases, the most abundant repeats were LTR retrotransposons, but the particular families that had become dominant were found to be different in the Pennisetum, Saccharum, Sorghum and Zea lineages. One element family, Huck, has been very active in all of the studied species over the last few million years. This suggests the transmittal of an active or quiescent autonomous set of Huck elements to this lineage at the founding of the panicoids. Similarly, independent recent activity of Ji and Opie elements in Zea and of Leviathan elements in Sorghum and Saccharum species suggests that members of these families with exceptional activation potential were present in the genome(s) of the founders of these lineages. In a detailed analysis of the Zea lineage, the combined action of several families of LTR retrotransposons were observed to have approximately doubled the genome size of Zea luxurians relative to Zea mays and Zea diploperennis in just the last few million years. One of the LTR retrotransposon amplification bursts in Zea may have been initiated by polyploidy, but the great majority of transposable element activations are not. Instead, the results suggest random activation of a few or many LTR retrotransposons families in particular lineages over evolutionary time, with some families especially prone to future activation and hyper-amplification. Heredity (2013) 110, 194-204; doi:10.1038/hdy.2012.99
引用
收藏
页码:194 / 204
页数:11
相关论文
共 59 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Exceptional Diversity, Non-Random Distribution, and Rapid Evolution of Retroelements in the B73 Maize Genome [J].
Baucom, Regina S. ;
Estill, James C. ;
Chaparro, Cristian ;
Upshaw, Naadira ;
Jogi, Ansuya ;
Deragon, Jean-Marc ;
Westerman, Richard P. ;
SanMiguel, Phillip J. ;
Bennetzen, Jeffrey L. .
PLOS GENETICS, 2009, 5 (11)
[3]   NUCLEAR DNA CONTENT AND MINIMUM GENERATION TIME IN HERBACEOUS PLANTS [J].
BENNETT, MD .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1972, 181 (1063) :109-+
[4]   Patterns in grass genome evolution [J].
Bennetzen, Jeffrey L. .
CURRENT OPINION IN PLANT BIOLOGY, 2007, 10 (02) :176-181
[5]   Reference genome sequence of the model plant Setaria [J].
Bennetzen, Jeffrey L. ;
Schmutz, Jeremy ;
Wang, Hao ;
Percifield, Ryan ;
Hawkins, Jennifer ;
Pontaroli, Ana C. ;
Estep, Matt ;
Feng, Liang ;
Vaughn, Justin N. ;
Grimwood, Jane ;
Jenkins, Jerry ;
Barry, Kerrie ;
Lindquist, Erika ;
Hellsten, Uffe ;
Deshpande, Shweta ;
Wang, Xuewen ;
Wu, Xiaomei ;
Mitros, Therese ;
Triplett, Jimmy ;
Yang, Xiaohan ;
Ye, Chu-Yu ;
Mauro-Herrera, Margarita ;
Wang, Lin ;
Li, Pinghua ;
Sharma, Manoj ;
Sharma, Rita ;
Ronald, Pamela C. ;
Panaud, Olivier ;
Kellogg, Elizabeth A. ;
Brutnell, Thomas P. ;
Doust, Andrew N. ;
Tuskan, Gerald A. ;
Rokhsar, Daniel ;
Devos, Katrien M. .
NATURE BIOTECHNOLOGY, 2012, 30 (06) :555-+
[6]   Mechanisms of recent genome size variation in flowering plants [J].
Bennetzen, JL ;
Ma, JX ;
Devos, K .
ANNALS OF BOTANY, 2005, 95 (01) :127-132
[7]  
Bennetzen JL, 1997, PLANT CELL, V9, P1509, DOI 10.1105/tpc.9.9.1509
[8]   CHARACTERIZATION OF THE PUFFERFISH (FUGU) GENOME AS A COMPACT MODEL VERTEBRATE GENOME [J].
BRENNER, S ;
ELGAR, G ;
SANDFORD, R ;
MACRAE, A ;
VENKATESH, B ;
APARICIO, S .
NATURE, 1993, 366 (6452) :265-268
[9]   An Arabidopsis hAT-like transposase is essential for plant development [J].
Bundock, P ;
Hooykaas, P .
NATURE, 2005, 436 (7048) :282-284
[10]   Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the Assisted Automated Assembler of Repeat Families (AAARF) algorithm [J].
DeBarry, Jeremy D. ;
Liu, Renyi ;
Bennetzen, Jeffrey L. .
BMC BIOINFORMATICS, 2008, 9 (1)