Topological properties of the multifunction space L(X) of cusco maps

被引:7
|
作者
Hola, L'. [1 ]
Jain, Tanvi [2 ]
McCoy, R. A. [3 ]
机构
[1] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
[2] Indian Inst Technol, Dept Math, New Delhi 110016, India
[3] Virginia Tech, Dept Math, Blacksburg, VA 24060 USA
关键词
Primary; 54C60; 54B20; 54A25; 54E35; 54D65; cusco maps; multifunction space; Vietoris topology; upper Vietoris topology; lower Vietoris topology; cardinal functions; metrizability; complete metrizability; countability properties;
D O I
10.2478/s12175-008-0107-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set-valued mapping F from a topological space X to a topological space Y is called a cusco map if F is upper semicontinuous and F(x) is a nonempty, compact and connected subset of Y for each x X. We denote by L(X), the space of all subsets F of X x R such that F is the graph of a cusco map from the space X to the real line R. In this paper, we study topological properties of L(X) endowed with the Vietoris topology.
引用
收藏
页码:763 / 780
页数:18
相关论文
共 50 条
  • [21] On topological properties of the Skorokhod space
    Kolesnikov, AV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 43 (04) : 640 - 644
  • [22] On the properties of topological entropy on a compact family of maps
    Vetokhin, A. N.
    MATHEMATICAL NOTES, 2016, 99 (3-4) : 354 - 361
  • [23] Topological properties of certain iterated entire maps
    Cao, Chunlei
    Wang, Yuefei
    Zhao, Huayu
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [24] On the properties of topological entropy on a compact family of maps
    A. N. Vetokhin
    Mathematical Notes, 2016, 99 : 354 - 361
  • [25] Topological Properties from Conventional Fourier Maps
    Torre-Fernandez, Laura
    Garcia-Granda, Santiago
    Menendez-Velazquez, Amador
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C480 - C480
  • [26] HOMOTOPY GROUPS OF SPACE OF CONTINUOUS MAPS FROM A FIBER SPACE INTO A TOPOLOGICAL GROUP
    LEGRAND, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (15): : 609 - 611
  • [27] MONOIDS OF SELF-MAPS OF TOPOLOGICAL SPHERICAL SPACE FORMS
    Kishimoto, Daisuke
    Oda, Nobuyuki
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2021, 23 (02) : 141 - 149
  • [28] ON A FINER TOPOLOGICAL SPACE THAN tau(theta) AND SOME MAPS
    Ekici, E.
    Jafari, S.
    Latif, R. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, (27): : 293 - 304
  • [29] TOPOLOGICAL PROPERTIES OF [X,Y]
    PEZENNEC, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (13): : 749 - 752
  • [30] Properties of Space Set Topological Spaces
    Han, Sang-Eon
    FILOMAT, 2016, 30 (09) : 2475 - 2487