Topological properties of the multifunction space L(X) of cusco maps

被引:7
|
作者
Hola, L'. [1 ]
Jain, Tanvi [2 ]
McCoy, R. A. [3 ]
机构
[1] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
[2] Indian Inst Technol, Dept Math, New Delhi 110016, India
[3] Virginia Tech, Dept Math, Blacksburg, VA 24060 USA
关键词
Primary; 54C60; 54B20; 54A25; 54E35; 54D65; cusco maps; multifunction space; Vietoris topology; upper Vietoris topology; lower Vietoris topology; cardinal functions; metrizability; complete metrizability; countability properties;
D O I
10.2478/s12175-008-0107-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set-valued mapping F from a topological space X to a topological space Y is called a cusco map if F is upper semicontinuous and F(x) is a nonempty, compact and connected subset of Y for each x X. We denote by L(X), the space of all subsets F of X x R such that F is the graph of a cusco map from the space X to the real line R. In this paper, we study topological properties of L(X) endowed with the Vietoris topology.
引用
收藏
页码:763 / 780
页数:18
相关论文
共 50 条