Holonomy groups of Lorentzian manifolds

被引:9
作者
Galaev, A. S. [1 ]
机构
[1] Univ Hradec Kralove, Hradec Kralove, Czech Republic
关键词
Lorentzian manifold; holonomy group; holonomy algebra; Walker manifold; Einstein equation; recurrent spinor field; conformally flat manifold; 2-symmetric Lorentzian manifold; PSEUDO-RIEMANNIAN MANIFOLDS; CONFORMALLY-FLAT; KAHLERIAN MANIFOLDS; CURVATURE TENSORS; PARALLEL SPINORS; METRICS; CLASSIFICATION; ALGEBRAS; SPACES; SUBMANIFOLDS;
D O I
10.1070/RM2015v070n02ABEH004947
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper contains a survey of recent results on classification of the connected holonomy groups of Lorentzian manifolds. A simplification of the construction of Lorentzian metrics with all possible connected holonomy groups is obtained. The Einstein equation, Lorentzian manifolds with parallel and recurrent spinor fields, conformally flat Walker metrics, and the classification of 2-symmetric Lorentzian manifolds are considered as applications.
引用
收藏
页码:249 / 298
页数:50
相关论文
共 142 条
  • [1] AKULOV VP, 1975, JETP LETT+, V22, P187
  • [2] AKULOV VP, 1975, ZH EKSP TEOR FIZ, V7, P396
  • [3] Alekseevskii D.V., 1975, Mat. Sb., V96, P87, DOI 10.1070/SM1975v025n01ABEH002200
  • [4] CLASSIFICATION OF HOMOGENEOUS CONFORMALLY FLAT RIEMANNIAN MANIFOLDS
    ALEKSEEVSKII, DV
    KIMELFELD, BN
    [J]. MATHEMATICAL NOTES, 1978, 24 (1-2) : 559 - 562
  • [5] Alekseevskij D. V., 1993, ENCYCL MATH SCI, V29, P1, DOI 10.1007/978-3-662-02901-5_1
  • [6] ALEKSEEVSKIY DV, 1988, GEOMETRIYA, V29, P5
  • [7] ALEKSEEVSKIY DV, 1975, MAT SBORNIK, V1, P93
  • [8] ALEKSEEVSKIY DV, 1978, MAT ZAMETKI, V1, P103
  • [9] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [10] Two-symmetric Lorentzian manifolds
    Alekseevsky, Dmitri V.
    Galaev, Anton S.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2331 - 2340