Numerical gate synthesis for quantum heuristics on bosonic quantum processors

被引:7
作者
Ozguler, A. Baris [1 ]
Venturelli, Davide [2 ,3 ]
机构
[1] Fermilab Natl Accelerator Lab, Superconducting Quantum Mat & Syst Ctr SQMS, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA
[2] NASA Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, USRA Res Inst Adv Comp Sci RIACS, Moffett Field, CA USA
[3] Fermilab Natl Accelerator Lab, Superconducting Quantum Mat & Syst Ctr SQMS, Moffett Field, CA USA
关键词
pulse engineering; quantum approximate optimization algorithm (QAOA); quantum control; circuit quantum electrodynamics (circuit QED); quantum compiler;
D O I
10.3389/fphy.2022.900612
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There is a recent surge of interest and insights regarding the interplay of quantum optimal control and variational quantum algorithms. We study the framework in the context of qudits which are, for instance, definable as controllable electromagnetic modes of a superconducting cavity system coupled to a transmon. By employing recent quantum optimal control approaches described in (Petersson and Garcia, 2021), we showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator. We discuss the results of numerical pulse engineering on the closed system for parametrized gates useful to implement Quantum Approximate Optimization Algorithm (QAOA) for qudits. The results show that high fidelity ( > 0.99) is achievable with sufficient computational effort for most cases under study, and extensions to multiple modes and open, noisy systems are possible. The tailored pulses can be stored and used as calibrated primitives for a future compiler in circuit quantum electrodynamics (cQED) systems.
引用
收藏
页数:9
相关论文
共 56 条
  • [1] Alam MS, 2022, Arxiv, DOI arXiv:2204.08605
  • [2] Petersson NA, 2020, Arxiv, DOI arXiv:2001.01013
  • [3] Experimental Deep Reinforcement Learning for Error-Robust Gate-Set Design on a Superconducting Quantum Computer
    Baum, Yuval
    Amico, Mirko
    Howell, Sean
    Hush, Michael
    Liuzzi, Maggie
    Mundada, Pranav
    Merkh, Thomas
    Carvalho, Andre R. R.
    Biercuk, Michael J.
    [J]. PRX QUANTUM, 2021, 2 (04):
  • [4] Circuit quantum electrodynamics
    Blais, Alexandre
    Grimsmo, Arne L.
    Girvin, S. M.
    Wallraffe, Andreas
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
  • [5] Quantum Information Scrambling on a Superconducting Qutrit Processor
    Blok, M. S.
    Ramasesh, V. V.
    Schuster, T.
    O'Brien, K.
    Kreikebaum, J. M.
    Dahlen, D.
    Morvan, A.
    Yoshida, B.
    Yao, N. Y.
    Siddiqi, I
    [J]. PHYSICAL REVIEW X, 2021, 11 (02)
  • [6] A volumetric framework for quantum computer benchmarks
    Blume-Kohout, Robin
    Young, Kevin
    [J]. QUANTUM, 2020, 4
  • [7] Asymptotically optimal quantum circuits for d-level systems -: art. no. 230502
    Bullock, SS
    O'Leary, DP
    Brennen, GK
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (23)
  • [8] Variational quantum algorithms
    Cerezo, M.
    Arrasmith, Andrew
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Fujii, Keisuke
    McClean, Jarrod R.
    Mitarai, Kosuke
    Yuan, Xiao
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (09) : 625 - 644
  • [9] Chakram S, 2020, Arxiv, DOI arXiv:2010.16382
  • [10] Quantum-optimal-control-inspired ansatz for variational quantum algorithms
    Choquette, Alexandre
    Di Paolo, Agustin
    Barkoutsos, Panagiotis Kl
    Senechal, David
    Tavernelli, Ivano
    Blais, Alexandre
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):