Lotka-Volterra systems as Poisson-Lie dynamics on solvable groups

被引:0
|
作者
Ballesteros, A. [1 ]
Blasco, A. [1 ]
Musso, F. [1 ]
机构
[1] Univ Burgos, Dept Fis, Burgos 09001, Spain
来源
XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS | 2012年 / 1460卷
关键词
Lotka-Volterra; perturbations; integrable systems; Lie groups; Poisson coalgebras; Casimir functions; N-dimensional; quantum deformations; HAMILTONIAN-STRUCTURE; 1ST INTEGRALS; 3; DIMENSIONS; EQUATIONS; INTEGRABILITY; POLYNOMIALS; INVARIANTS;
D O I
10.1063/1.4733365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of integrable 3D Lotka-Volterra (LV) equations is shown to be a particular instance of Poisson-Lie dynamics on a family of solvable 3D Lie groups. As a consequence, the classification of all possible Poisson-Lie structures on these groups is shown to provide a systematic approach to obtain multiparametric integrable deformations of this LV system. Moreover, by making use of the coproduct map induced by the group multiplication, a twisted set of 3N-dimensional integrable Lotka-Volterra equations can be constructed. Finally, the quantization of one of the Poisson-Lie LV structures is performed, and is shown to give rise to a quantum euclidean algebra.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 50 条
  • [21] DARBOUX POLYNOMIALS FOR LOTKA-VOLTERRA SYSTEMS IN THREE DIMENSIONS
    Christodoulides, Yiannis T.
    Damianou, Pantelis A.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (03) : 339 - 354
  • [22] Competitive Lotka-Volterra population dynamics with jumps
    Bao, Jianhai
    Mao, Xuerong
    Yin, Geroge
    Yuan, Chenggui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6601 - 6616
  • [23] Global dynamics of a family of 3-D Lotka-Volterra systems
    Murza, A. C.
    Teruel, A. E.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 269 - 284
  • [24] A NEW CLASS OF INTEGRABLE LOTKA-VOLTERRA SYSTEMS
    Christodoulidi, Helen
    Hone, Andrew N. W.
    Kouloukas, Theodoros E.
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 223 - 237
  • [25] Lotka-Volterra systems with constant interaction coefficients
    Redheffer, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (08) : 1151 - 1164
  • [26] GENERALIZED STOCHASTIC DELAY LOTKA-VOLTERRA SYSTEMS
    Yin, Juliang
    Mao, Xuerong
    Wu, Fuke
    STOCHASTIC MODELS, 2009, 25 (03) : 436 - 454
  • [27] Global attractor in competitive Lotka-Volterra systems
    Hou, Zhanyuan
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (07) : 995 - 1008
  • [28] Quantum algebras as quantizations of dual Poisson-Lie groups
    Ballesteros, Angel
    Musso, Fabio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (19)
  • [29] On chaos in Lotka-Volterra systems: an analytical approach
    Kozlov, Vladimir
    Vakulenko, Sergey
    NONLINEARITY, 2013, 26 (08) : 2299 - 2314
  • [30] Whence Lotka-Volterra?Conservation laws and integrable systems in ecology
    James P. O’Dwyer
    Theoretical Ecology, 2018, 11 : 441 - 452