Lotka-Volterra systems as Poisson-Lie dynamics on solvable groups

被引:0
作者
Ballesteros, A. [1 ]
Blasco, A. [1 ]
Musso, F. [1 ]
机构
[1] Univ Burgos, Dept Fis, Burgos 09001, Spain
来源
XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS | 2012年 / 1460卷
关键词
Lotka-Volterra; perturbations; integrable systems; Lie groups; Poisson coalgebras; Casimir functions; N-dimensional; quantum deformations; HAMILTONIAN-STRUCTURE; 1ST INTEGRALS; 3; DIMENSIONS; EQUATIONS; INTEGRABILITY; POLYNOMIALS; INVARIANTS;
D O I
10.1063/1.4733365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of integrable 3D Lotka-Volterra (LV) equations is shown to be a particular instance of Poisson-Lie dynamics on a family of solvable 3D Lie groups. As a consequence, the classification of all possible Poisson-Lie structures on these groups is shown to provide a systematic approach to obtain multiparametric integrable deformations of this LV system. Moreover, by making use of the coproduct map induced by the group multiplication, a twisted set of 3N-dimensional integrable Lotka-Volterra equations can be constructed. Finally, the quantization of one of the Poisson-Lie LV structures is performed, and is shown to give rise to a quantum euclidean algebra.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 1956, ELEMENTS MATH BIOL, DOI DOI 10.2307/1909476
[2]   (Super)integrability from coalgebra symmetry: formalism and applications [J].
Ballesteros, A. ;
Blasco, A. ;
Herranz, F. J. ;
Musso, F. ;
Ragnisco, O. .
WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
[3]   A systematic construction of completely integrable Hamiltonians from coalgebras [J].
Ballesteros, A ;
Ragnisco, O .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3791-3813
[4]   AN R-MATRIX APPROACH TO THE QUANTIZATION OF THE EUCLIDEAN GROUP E(2) [J].
BALLESTEROS, A ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (24) :7495-7501
[5]  
Ballesteros A., 2011, UNPUB
[6]   Integrable deformations of Lotka-Volterra systems [J].
Ballesteros, Angel ;
Blasco, Alfonso ;
Musso, Fabio .
PHYSICS LETTERS A, 2011, 375 (38) :3370-3374
[7]   ON THE INTEGRABILITY OF SOME GENERALIZED LOTKA-VOLTERRA SYSTEMS [J].
BOUNTIS, TC ;
BIER, M ;
HIJMANS, J .
PHYSICS LETTERS A, 1983, 97 (1-2) :11-14
[8]   INVARIANTS FOR MODELS OF INTERACTING POPULATIONS [J].
CAIRO, L ;
FEIX, MR ;
GOEDERT, J .
PHYSICS LETTERS A, 1989, 140 (7-8) :421-427
[9]   FAMILIES OF INVARIANTS OF THE MOTION FOR THE LOTKA-VOLTERRA EQUATIONS - THE LINEAR POLYNOMIALS FAMILY [J].
CAIRO, L ;
FEIX, MR .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) :2440-2455
[10]   Integrability of the 2D Lotka-Volterra system via polynomial first integrals and polynomial inverse integrating factors [J].
Cairó, L ;
Llibre, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2407-2417