MDL, penalized likelihood, and statistical risk

被引:5
作者
Barron, Andrew R. [1 ]
Huang, Cong [1 ]
Li, Jonathan Q. [2 ]
Luo, Xi [1 ]
机构
[1] Yale Univ, Dept Stat, New Haven, CT 06520 USA
[2] Radar Networks Inc, San Francisco, CA 94107 USA
来源
2008 IEEE INFORMATION THEORY WORKSHOP | 2008年
关键词
D O I
10.1109/ITW.2008.4578660
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We determine, for both countable and uncountable collections of functions, information-theoretic conditions on a penalty pen(f) such that the optimizer f of the penalized log likelihood criterion log 1/likelihood(f)+pen(f) has risk not more than the index of resolvability corresponding to the accuracy of the optimizer of the expected value of the criterion. If F is the linear span of a dictionary of functions, traditional description-length penalties are based on the number of non-zero terms (the l(0) norm of the coefficients). We specialize our general conclusions to show the l(1) norm of the coefficients times a suitable multiplier lambda is also an information-theoretically valid penalty.
引用
收藏
页码:247 / +
页数:3
相关论文
共 82 条
[1]  
[Anonymous], 2006, Elements of information theory
[2]  
[Anonymous], 1999, Mathematical Methods of Statistics
[3]  
[Anonymous], ANN STAT
[4]  
[Anonymous], NONPARAMETRIC FUNCTI
[5]  
BANERJEE O, 2007, J MACHINE LEARNING R
[6]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[7]   The minimum description length principle in coding and modeling [J].
Barron, A ;
Rissanen, J ;
Yu, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2743-2760
[8]  
Barron A, 1998, ANN STAT, V26, P1800
[9]  
Barron A.R., 1985, THESIS STANFORD U
[10]  
Barron A. R., 1998, BAYESIAN STAT, V6, P27