Analysis on the impact response of fiber-reinforced composite laminates: an emphasis on the FEM simulation

被引:16
|
作者
He, Jian [1 ]
He, Liang [1 ]
Yang, Bin [2 ]
机构
[1] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin, Heilongjiang, Peoples R China
[2] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
dynamic response; energy absorption; laminated composites; numerical simulation; DAMAGE; DELAMINATION; PREDICTION; AEROSPACE;
D O I
10.1515/secm-2017-0222
中图分类号
TB33 [复合材料];
学科分类号
摘要
The effects of units, material parameters, and constitutive relationships on the dynamic mechanical response of composite laminates subjected to high- and low-velocity impacts were investigated. Additionally, the role of impact or shape, including hemispherical, flat, and conical, on the damage area of the adhesive layer and displacement of the center of the laminated plates was investigated. The results show that the energy absorption of composite laminates increases with impact velocity, and specific energy absorption changes with the density of the contact surface, which is affected by ply thickness. Moreover, the target energy absorption decreases with increasing layer angle. Under a low-velocity impact, the maximum contact force, damage area of the adhesive layer, and displacement of the center of the laminated plate increase as the impact energy increases, thus showing that impact energy is not directly related to contact duration and energy absorption of composite laminates. The results of different geometric shapes show that the damage area of the adhesive layer and the displacement of the center of the laminated plates are largest for a conical impactor and smallest for a flat impactor.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] TRANSIENT THERMAL CONDUCTION IN RECTANGULAR FIBER-REINFORCED COMPOSITE LAMINATES
    VINAYAK, RU
    IYENGAR, NGR
    ADVANCED COMPOSITE MATERIALS, 1995, 4 (04) : 327 - 342
  • [32] Layerwise modeling of progressive damage in fiber-reinforced composite laminates
    Robbins Jr. D.H.
    Reddy J.N.
    Rostam-Abadi F.
    International Journal of Mechanics and Materials in Design, 2005, 2 (3-4) : 165 - 182
  • [33] A Fatigue Life Prediction Method for Fiber-Reinforced Composite Laminates
    Xu R.
    Gao J.
    Zhu P.
    Wu Z.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2024, 58 (03): : 400 - 410
  • [34] Snap-through of unsymmetric fiber-reinforced composite laminates
    Dano, ML
    Hyer, MW
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (01) : 175 - 198
  • [35] Failure of fiber-reinforced composite laminates under longitudinal compression
    Zhou, Yi
    Huang, Zheng-Ming
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (24) : 3395 - 3411
  • [36] Acoustic Imaging of microstructures of carbon fiber-reinforced composite laminates
    Liu, SP
    Levin, VM
    Guo, EM
    ADVANCED FIBERS, PLASTICS, LAMINATES AND COMPOSITES, 2002, 702 : 365 - 375
  • [37] Drilling behavior of sisal fiber-reinforced polypropylene composite laminates
    Bajpai, Pramendra Kumar
    Singh, Inderdeep
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2013, 32 (20) : 1569 - 1576
  • [38] A multicriteria experimental analysis of impact on fiber reinforced polymer composite laminates
    Alemi-Ardakani, M.
    Milani, A. S.
    Yannacopoulos, S.
    Shokouhi, G.
    MATERIALS TODAY COMMUNICATIONS, 2015, 4 : 6 - 15
  • [39] Damped Free Vibration Analysis of Woven Glass Fiber-Reinforced Epoxy Composite Laminates
    Navaneeth, I. M.
    Poojary, Suhas
    Chandrashekar, A.
    Razak, Abdul
    Hasan, Nasim
    Almohana, Abdulaziz Ibrahim
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2022, 2022
  • [40] A global-local approach for progressive damage analysis of fiber-reinforced composite laminates
    Nagaraj, M. H.
    Petrolo, M.
    Carrera, E.
    THIN-WALLED STRUCTURES, 2021, 169