Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood

被引:134
|
作者
Tu, Kunkun [1 ]
Wang, Xiaoqing [1 ]
Kong, Lizhuo [1 ]
Guan, Hao [1 ]
机构
[1] Chinese Acad Forestry, Res Inst Wood Ind, Dept Wood Modificat, Xiangshan Rd, Beijing 100091, Peoples R China
基金
中国国家自然科学基金;
关键词
Superhydrophobic; Durability; Self-healing; Photocatalytic; Wood; ROBUST; FABRICATION; COATINGS;
D O I
10.1016/j.matdes.2017.11.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Maintaining the hierarchically roughened structures and non-wetting properties are critically essential for a superhydrophobic surface upon sunlight irradiation, physical rubbing or organic contamination in practical applications but remain extremely challenging. Herein, by simply spraying a waterborne perfluoroalkyl methacrylic copolymer (PMC) emulsion mixed with TiO2 nanoparticles onto polydimethylsiloxane (PDMS) pre-coated substrates, mechanically durable, self-healing superhydrophobic surfaces were fabricated on solid wood. The coated surfaces exhibited exceptional repellency toward water as well as organic liquids with low surface tensions including ethylene glycol. The as-prepared coatings on the rigid wood substrate showed excellent durability against mechanical abrasion while retaining the rough surface textures due to the hydrophobic binder PMC anchoring the nanoparticles tightly on the surface, thus sustaining the superhydrophobicity of the surface. Moreover, the non-wetting properties of the surface damaged by ultraviolet (UV) irradiation can be automatically restored by a simple heat treatment, which facilitates the migration of the underlying hydrophobic PDMS onto the surface replenishing the necessary low-surface-energy materials. Besides, the TiO2-containing coatings exhibited photocatalytic activity in degrading organic contaminants and can also preserve the underlying wood substrate from photodegradation during UV exposure. The developed method herein features environment-friendly raw materials, facile processing and large-scale fabrication. Such superhydrophobic wood surfaces with multi-functionalities may open new avenues in the field of novel wood-based materials. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [1] Constructing Mechanochemical Durable and Self-Healing Superhydrophobic Surfaces
    Zhang, Chengjiao
    Liang, Fanghua
    Zhang, Wei
    Liu, Hui
    Ge, Mingzheng
    Zhang, Yanyan
    Dai, Jiamu
    Wang, Hailou
    Xing, Guichuan
    Lai, Yuekun
    Tang, Yuxin
    ACS OMEGA, 2020, 5 (02): : 986 - 994
  • [2] Durable and self-healing superhydrophobic surfaces for building materials
    Zulfiqar, Usama
    Awais, Muhammad
    Hussain, Syed Zajif
    Hussain, Irshad
    Husain, S. Wilayat
    Subhani, Tayyab
    MATERIALS LETTERS, 2017, 192 : 56 - 59
  • [3] Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability
    Golovin, Kevin
    Boban, Mathew
    Mabry, Joseph M.
    Tuteja, Anish
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) : 11212 - 11223
  • [4] Recent development in the fabrication of self-healing superhydrophobic surfaces
    Sam, Ebenezer Kobina
    Sam, Daniel Kobina
    Lv, Xiaomeng
    Liu, Botao
    Xiao, Xinxin
    Gong, Shanhe
    Yu, Weiting
    Chen, Jie
    Liu, Jun
    CHEMICAL ENGINEERING JOURNAL, 2019, 373 : 531 - 546
  • [5] Sustainable superhydrophobic wood with self-healing properties and enhanced durability
    Wang, Xiaoxia
    Huang, Yuxiang
    Wang, Sidong
    Lei, Wencheng
    Wu, Jiangyuan
    Yu, Wenji
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [6] Environmentally durable superhydrophobic surfaces with robust photocatalytic self-cleaning and self-healing properties prepared via versatile film deposition methods
    Huang, Zhiwei
    Gurney, Robert S.
    Wang, Tao
    Liu, Dan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 527 : 107 - 116
  • [7] Facile Preparation of Durable and Eco-Friendly Superhydrophobic Filter with Self-Healing Ability for Efficient Oil/Water Separation
    Voo, Wei Xin
    Chong, Woon Chan
    Teoh, Hui Chieh
    Lau, Woei Jye
    Chan, Yi Jing
    Chung, Ying Tao
    MEMBRANES, 2023, 13 (09)
  • [8] Facile preparation of super durable superhydrophobic materials
    Wu, Lei
    Zhang, Junping
    Li, Bucheng
    Fan, Ling
    Li, Lingxiao
    Wang, Aiqin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 432 : 31 - 42
  • [9] Self-Healing Superhydrophobic Surfaces: Healing Principles and Applications
    Xiang, Siyuan
    Liu, Wendong
    ADVANCED MATERIALS INTERFACES, 2021, 8 (12)
  • [10] A mechanically robust superhydrophobic corrosion resistant coating with self-healing capability
    Sun, Jizhou
    Wang, Jian
    Xu, Weichen
    Zhang, Binbin
    MATERIALS & DESIGN, 2024, 240