Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources

被引:222
作者
Kim, Y. M. [1 ]
Kim, C. G. [1 ]
Favrat, D. [2 ]
机构
[1] Korea Inst Machinery & Mat, ECO Machinery Div, Taejon 305343, South Korea
[2] Swiss Fed Inst Technol, Ind Energy Syst Lab, CH-1015 Lausanne, Switzerland
关键词
Transcritical CO2; Supercritical CO2; Rankine cycle; Brayton cycle; Thermal energy storage (TES); Exergy; ORGANIC RANKINE-CYCLE; POWER CYCLE; SYSTEM;
D O I
10.1016/j.energy.2012.03.076
中图分类号
O414.1 [热力学];
学科分类号
摘要
In CO2 cycles with high-temperature heat sources that are used in applications such as nuclear power, concentrated solar power, and combustion, partial condensation transcritical CO2 (T-CO2) cycles or recompression supercritical CO2 (S-CO2) cycles are considered to be promising cycles; this is because these cycles cause a reduction in the large internal irreversibility in the recuperator owing to the higher specific heat of the high-pressure side than that of the low-pressure side. However, if heat is available in the low-temperature range, the T-CO2 Rankine cycles (or fully-cooled S-CO2 cycles) will be more effective than the T-CO2 Brayton cycles (or less-cooled S-CO2 cycles) and even than the partial condensation T-CO2 cycles (or recompression S-CO2 cycles). This is because the compression work is reduced while achieving the same temperature rise by heat recovery through the recuperator before the high-temperature heater. The proposed T-CO2 Rankine cycles or fully-cooled S-CO2 cycles using both the low- and high-temperature heat sources can maximize the power output of the CO2 power cycle with the given high-temperature heat sources. Moreover, the proposed CO2 cycles combined with the low-temperature thermal energy storage offer the advantage of load leveling over other CO2 cycles, with the given high-temperature heat sources. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:402 / 415
页数:14
相关论文
共 25 条
[1]  
Angelino G, 1968, 68CT23 ASME
[2]   Exergy analysis of an integrated solar combined cycle system [J].
Baghernejad, A. ;
Yaghoubi, M. .
RENEWABLE ENERGY, 2010, 35 (10) :2157-2164
[3]  
Borel L., 2010, Thermodynamics and energy systems analysis, P399
[4]   Analysis of a carbon dioxide transcritical power cycle using a low temperature source [J].
Cayer, Emmanuel ;
Galanis, Nicolas ;
Desilets, Martin ;
Nesreddine, Hakim ;
Roy, Philippe .
APPLIED ENERGY, 2009, 86 (7-8) :1055-1063
[5]   Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion [J].
Chen, Huijuan ;
Goswami, D. Yogi ;
Rahman, Muhammad M. ;
Stefanakos, Elias K. .
APPLIED ENERGY, 2011, 88 (08) :2802-2808
[6]   A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery [J].
Chen, Y. ;
Lundqvist, P. ;
Johansson, A. ;
Platell, P. .
APPLIED THERMAL ENGINEERING, 2006, 26 (17-18) :2142-2147
[7]  
Chen Y., 2006, THESIS SCH IND ENG M
[8]  
Dostal, 2004, THESIS MIT US
[9]   The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles [J].
Dostal, Vaclav ;
Hejzlar, Pavel ;
Driscoll, Michael J. .
NUCLEAR TECHNOLOGY, 2006, 154 (03) :283-301
[10]  
Feher E. G., 1968, Energy Conversion, V8, P85, DOI 10.1016/0013-7480(68)90105-8