A Non-Reducible Meyer-Muller's Like Elliptic Curve Cryptosystem

被引:0
作者
Martinez, S. [1 ,2 ]
Miret, J. M. [1 ,3 ,4 ]
Sebe, F. [1 ,3 ,5 ]
Tomas, R. [1 ,2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida, Spain
[2] Univ Lleida UdL, Cryptog & Graphs Grp, Dept Math, Lleida, Spain
[3] Univ Lleida, Dept Math, Lleida, Spain
[4] Univ Barcelona, E-08007 Barcelona, Spain
[5] Assoc Telecom Engineers Catalonia, Barcelona, Spain
关键词
Public key cryptography; Elliptic curve; Reduction; PUBLIC-KEY CRYPTOSYSTEMS;
D O I
10.1109/TLA.2012.6222578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a novel variant of Meyer-Muller's elliptic curve cryptosystem. Unlike Meyer-Muller's proposal and its Chua-Ling's variant, the one presented here is not reducible to Rabin-Williams' cryptosystem. This is formally proven under the assumption that computing half points on elliptic curves defined over the ring Z/nZ is hard when the factorization of n is unknown.
引用
收藏
页码:1730 / 1733
页数:4
相关论文
共 14 条
  • [1] Chua S.K., 1997, LNCS, V1276, P186
  • [2] Demytko N., 1993, ADV CRYPTOLOGY LNCS, V765, P40
  • [3] Elliptic curve Paillier schemes
    Galbraith, SD
    [J]. JOURNAL OF CRYPTOLOGY, 2002, 15 (02) : 129 - 138
  • [4] Cryptosystem of Chua and Ling
    Joye, M
    Quisquater, JJ
    [J]. ELECTRONICS LETTERS, 1997, 33 (23) : 1938 - 1938
  • [5] Joye M., 1998, CODES CRYPTOGRAPHY, V14, P53
  • [6] Koyama K., 1991, ADV CRYPTOLOGY CRYPT, V576, P252
  • [7] Martinez S., 2005, 3 C IB SEG INF, P151
  • [8] Menezes A., 1996, HDB APPL CRYPTOGRAPH
  • [9] Meyer B, 1996, LECT NOTES COMPUT SC, V1070, P49
  • [10] Miret J.M., 2007, Contributions to Science, V3, P481