A Non-Reducible Meyer-Muller's Like Elliptic Curve Cryptosystem

被引:0
作者
Martinez, S. [1 ,2 ]
Miret, J. M. [1 ,3 ,4 ]
Sebe, F. [1 ,3 ,5 ]
Tomas, R. [1 ,2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida, Spain
[2] Univ Lleida UdL, Cryptog & Graphs Grp, Dept Math, Lleida, Spain
[3] Univ Lleida, Dept Math, Lleida, Spain
[4] Univ Barcelona, E-08007 Barcelona, Spain
[5] Assoc Telecom Engineers Catalonia, Barcelona, Spain
关键词
Public key cryptography; Elliptic curve; Reduction; PUBLIC-KEY CRYPTOSYSTEMS;
D O I
10.1109/TLA.2012.6222578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a novel variant of Meyer-Muller's elliptic curve cryptosystem. Unlike Meyer-Muller's proposal and its Chua-Ling's variant, the one presented here is not reducible to Rabin-Williams' cryptosystem. This is formally proven under the assumption that computing half points on elliptic curves defined over the ring Z/nZ is hard when the factorization of n is unknown.
引用
收藏
页码:1730 / 1733
页数:4
相关论文
共 14 条
[1]  
Chua S.K., 1997, LNCS, V1276, P186
[2]  
Demytko N., 1993, ADV CRYPTOLOGY LNCS, V765, P40
[3]   Elliptic curve Paillier schemes [J].
Galbraith, SD .
JOURNAL OF CRYPTOLOGY, 2002, 15 (02) :129-138
[4]   Cryptosystem of Chua and Ling [J].
Joye, M ;
Quisquater, JJ .
ELECTRONICS LETTERS, 1997, 33 (23) :1938-1938
[5]  
Joye M., 1998, CODES CRYPTOGRAPHY, V14, P53
[6]  
Koyama K., 1991, ADV CRYPTOLOGY CRYPT, V576, P252
[7]  
Martinez S., 2005, 3 C IB SEG INF, P151
[8]  
Menezes A., 1996, HDB APPL CRYPTOGRAPH
[9]  
Meyer B, 1996, LECT NOTES COMPUT SC, V1070, P49
[10]  
Miret J.M., 2007, Contributions to Science, V3, P481