Statistical Analysis of Massive AIS Trajectories Using Gaussian Mixture Models

被引:6
|
作者
Hu, Bin [1 ]
Liu, Ryan Wen [1 ,2 ]
Wang, Kai [1 ]
Li, Yan [1 ]
Liang, Maohan [1 ,2 ]
Li, Huanhuan [1 ,2 ]
Liu, Jingxian [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Nav, Wuhan 430063, Hubei, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Inland Shipping Technol, Wuhan 430063, Hubei, Peoples R China
来源
2017 2ND INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP) | 2017年
基金
中国国家自然科学基金;
关键词
automatic identification system; Gaussian mixture model; Expectation Maximization algorithm; statistical analysis; EM ALGORITHM;
D O I
10.1109/ICMIP.2017.57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Automatic Identification System (AIS) is an automatic tracking system which has been widely applied in the fields of intelligent transportation systems, e.g., collision avoidance, navigation, maritime supervision and management. Compare with other positioning systems, e.g., very high frequency (VHF) and radar, AIS can conquer the human errors and it is almost not affected by the external environment. To make better use of the AIS data, it is necessary to statistically analyze the massive AIS trajectories. The statistical results could make us better understand the potential properties of AIS trajectories. It is well known that most current practical applications are strongly dependent on the geometrical structures of AIS trajectories. In this paper, a Gaussian Mixture Model (GMM) is introduced to investigate the longitude and latitude differences of AIS trajectory data. The parameters of GMM are estimated using the Expectation Maximization (EM) algorithm. The experimental results have illustrated the superior performance of our proposed method.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 50 条
  • [41] Fusion of possibly biased location estimates using Gaussian mixture models
    Kennedy, H. L.
    INFORMATION FUSION, 2012, 13 (03) : 214 - 222
  • [42] A univocal definition of the neuronal soma morphology using Gaussian mixture models
    Luengo-Sanchez, Sergio
    Bielza, Concha
    Benavides-Piccione, Ruth
    Fernaud-Espinosa, Isabel
    DeFelipe, Javier
    Larranaga, Pedro
    FRONTIERS IN NEUROANATOMY, 2015, 9 : 1 - 11
  • [43] Off-line writer identification using Gaussian Mixture Models
    Schlapbach, Andreas
    Bunke, Horst
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 992 - +
  • [44] Gaussian mixture models for higher-order side channel analysis
    Lemke-Rust, Kerstin
    Paar, Christof
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2007, PROCEEDINGS, 2007, 4727 : 14 - +
  • [45] Speech emotion recognition using Gaussian mixture vector autoregressive models
    El Ayadi, Moataz M. H.
    Kamel, Mohamed S.
    Karray, Fakhri
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 957 - +
  • [46] Driver Recognition Using Gaussian Mixture Models and Decision Fusion Techniques
    Benli, Kistin S.
    Duzagac, Remzi
    Eskil, M. Taner
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 803 - 811
  • [47] Design of Bayesian Signal Detectors using Gaussian-Mixture Models
    Jilkov, Vesselin P.
    Katkuri, Jaipal R.
    Nandiraju, Hari K.
    2010 42ND SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY (SSST), 2010,
  • [48] Distributionally robust optimization using optimal transport for Gaussian mixture models
    Kammammettu, Sanjula
    Yang, Shu-Bo
    Li, Zukui
    OPTIMIZATION AND ENGINEERING, 2024, 25 (03) : 1571 - 1596
  • [49] ACOUSTIC FALL DETECTION USING GAUSSIAN MIXTURE MODELS AND GMM SUPERVECTORS
    Zhuang, Xiaodan
    Huang, Jing
    Potamianos, Gerasimos
    Hasegawa-Johnson, Mark
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 69 - +
  • [50] Unsupervised Change Detection in SAR images using Gaussian Mixture Models
    Kiana, E.
    Homayouni, S.
    Sharifi, M. A.
    Farid-Rohani, M.
    INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 407 - 410