Positive steady states in an epidemic model with nonlinear incidence rate

被引:8
作者
Gao, Xiaoyan [1 ,2 ]
Cai, Yongli [2 ]
Rao, Feng [3 ]
Fu, Shengmao [1 ]
Wang, Weiming [2 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou 730070, Gansu, Peoples R China
[2] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
[3] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Nonconstant positive steady state; Bifurcation; Turing instability; Nonlinear incidence rate; REACTION-DIFFUSION MODEL; HARRISON REACTION SCHEME; CROSS-DIFFUSION; SPATIOTEMPORAL PATTERNS; STATIONARY SOLUTIONS; TURING PATTERNS; BIFURCATION; SYSTEM; DYNAMICS;
D O I
10.1016/j.camwa.2017.09.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a diffusive epidemic model with nonlinear incidence rate under homogeneous Neumann boundary condition. The value of this study lies in two aspects. Mathematically, we show the stability of the constant positive steady state solution, the existence and nonexistence, the local and global structure of nonconstant positive steady states. And epidemiologically, we find that the system exhibits Turing patterns controlled by diffusion. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:424 / 443
页数:20
相关论文
共 30 条
  • [1] Amick C. J., 1984, ANN SCUOLA NORM SUP, V11, P441
  • [2] [Anonymous], 2004, SPATIAL ECOLOGY VIA
  • [3] Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion
    Cai, Yongli
    Wang, Weiming
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 99 - 125
  • [4] A stochastic SIRS epidemic model with infectious force under intervention strategies
    Cai, Yongli
    Kang, Yun
    Banerjee, Malay
    Wang, Weiming
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7463 - 7502
  • [5] Stability and Hopf bifurcation of the stationary solutions to an epidemic model with cross-diffusion
    Cai, Yongli
    Wang, Weiming
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (08) : 1906 - 1920
  • [6] Crandall M. G., 1971, J. Funct. Anal., V8, P321
  • [7] A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain
    Fitzgibbon, WE
    Langlais, M
    Morgan, JJ
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 570 - 588
  • [8] PARTIAL-DIFFERENTIAL EQUATIONS IN ECOLOGY - SPATIAL INTERACTIONS AND POPULATION-DYNAMICS
    HOLMES, EE
    LEWIS, MA
    BANKS, JE
    VEIT, RR
    [J]. ECOLOGY, 1994, 75 (01) : 17 - 29
  • [9] Jang J., 2004, J DYN DIFFER EQU, V2, P297
  • [10] The Evolutionary Dynamics of Stochastic Epidemic Model with Nonlinear Incidence Rate
    Li, Dan
    Cui, Jing'an
    Liu, Meng
    Liu, Shengqiang
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (09) : 1705 - 1743