ON GENERALIZED FIBONACCI AND LUCAS NUMBERS BY MATRIX METHODS

被引:0
|
作者
Cerda-Morales, Gamaliel [1 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Math, Valparaiso, Chile
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2013年 / 42卷 / 02期
关键词
Matrix methods; generalized Lucas numbers; Binet's formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study we define the generalized Lucas V (p, q)-matrix similar to the generalized Fibonacci U(1, -1)-matrix. The V(p, q)-matrix is different from the Fibonacci U(p, q)-matrix, but is related to it. Using this matrix representation, we have found some well-known equalities and a Binet-like formula for the generalized Fibonacci and Lucas numbers.
引用
收藏
页码:173 / 179
页数:7
相关论文
共 50 条