Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: Glass transition and protein conformation

被引:123
作者
Chang, BS [1 ]
Beauvais, RM [1 ]
Dong, AC [1 ]
Carpenter, JF [1 ]
机构
[1] UNIV COLORADO,HLTH SCI CTR,SCH PHARM,DEPT PHARMACEUT SCI,DENVER,CO 80262
基金
美国国家科学基金会;
关键词
D O I
10.1006/abbi.1996.0305
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effects of glass transition of, and protein conformation in, the dried solid on the storage stability of freeze-dried recombinant human interleukin-1 receptor antagonist (rhIL-1ra) were examined. Glass transition is a temperature-dependent phenomenon. Amorphous materials become hard and brittle at temperatures below their characteristic glass transition temperatures (Tg) such that diffusion of molecules along the matrix is not sufficient to cause large-scale structural changes. To ascertain the importance of the glass transition in protein storage stability, we compared 10 different lyophilized rhIL-1ra formulations, with Tgs ranging from 20 to 56 degrees C, during several weeks of storage at temperatures above and below the samples' Tgs. Protein degradation, both deamidation and aggregation, was greatly accelerated at temperatures above Tg,but for some formulations also arose below Tg. Thus, storage of dried proteins below the Tg is necessary but not sufficient to ensure long-term stability. To examine the effects of protein structure in the dried solid, we prepared formulations with various sucrose concentrations, all of which had a Tg = 66 +/- 2.5 degrees C. With infrared spectroscopy, we determined that the protein lyophilized with less than or equal to 1% sucrose was unfolded in the initial dried solid. In contrast, in those formulations with greater than or equal to 5% sucrose, conformational change was inhibited during lyophilization. When stored at 50 degrees C, degradation of the freeze-dried protein varied inversely with sucrose concentration. These results indicate that structural changes arising during the lyophilization process led to damage during subsequent storage, even if the storage temperature was less than the Tg. Together the results of these studies document that to obtain optimum stability of dried rhIL-1ra it was necessary to inhibit conformational change during lyophilization and to store at temperatures below the Tg of the dried formulation. (C) 1996 Academic Press, Inc.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 33 条
[1]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[2]   FACTORS AFFECTING SHORT-TERM AND LONG-TERM STABILITIES OF PROTEINS [J].
ARAKAWA, T ;
PRESTRELSKI, SJ ;
KENNEY, WC ;
CARPENTER, JF .
ADVANCED DRUG DELIVERY REVIEWS, 1993, 10 (01) :1-28
[3]   CRYOPROTECTION OF PHOSPHOFRUCTOKINASE WITH ORGANIC SOLUTES - CHARACTERIZATION OF ENHANCED PROTECTION IN THE PRESENCE OF DIVALENT-CATIONS [J].
CARPENTER, JF ;
HAND, SC ;
CROWE, LM ;
CROWE, JH .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1986, 250 (02) :505-512
[4]   SEPARATION OF FREEZING-INDUCED AND DRYING-INDUCED DENATURATION OF LYOPHILIZED PROTEINS USING STRESS-SPECIFIC STABILIZATION .1. ENZYME-ACTIVITY AND CALORIMETRIC STUDIES [J].
CARPENTER, JF ;
PRESTRELSKI, SJ ;
ARAKAWA, T .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 303 (02) :456-464
[5]   THE MECHANISM OF CRYOPROTECTION OF PROTEINS BY SOLUTES [J].
CARPENTER, JF ;
CROWE, JH .
CRYOBIOLOGY, 1988, 25 (03) :244-255
[6]   AN INFRARED SPECTROSCOPIC STUDY OF THE INTERACTIONS OF CARBOHYDRATES WITH DRIED PROTEINS [J].
CARPENTER, JF ;
CROWE, JH .
BIOCHEMISTRY, 1989, 28 (09) :3916-3922
[7]   Development of a stable freeze-dried formulation of recombinant human interleukin-1 receptor antagonist [J].
Chang, BS ;
Reeder, G ;
Carpenter, JF .
PHARMACEUTICAL RESEARCH, 1996, 13 (02) :243-249
[8]  
CHANG BS, 1992, CRYOBIOLOGY, V29, P831
[9]   PROPENSITY FOR SPONTANEOUS SUCCINIMIDE FORMATION FROM ASPARTYL AND ASPARAGINYL RESIDUES IN CELLULAR PROTEINS [J].
CLARKE, S .
INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH, 1987, 30 (06) :808-821
[10]  
CLELAND JL, 1993, CRIT REV THER DRUG, V10, P307