Hyperspectral Unmixing with Gaussian Mixture Model and Low-Rank Representation

被引:25
|
作者
Ma, Yong [1 ,2 ]
Jin, Qiwen [1 ]
Mei, Xiaoguang [1 ,2 ]
Dai, Xiaobing [1 ,2 ]
Fan, Fan [1 ,2 ]
Li, Hao [3 ]
Huang, Jun [1 ,2 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Inst Aerosp Sci & Technol, Wuhan 430079, Hubei, Peoples R China
[3] Wuhan Polytech Univ, Coll Math & Comp Sci, Wuhan 430023, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image analysis; endmember variability; Gaussian mixture model; superpixel segmentation; low-rank property; Bayesian framework; ENDMEMBER VARIABILITY; SPARSE; IMAGE; ALGORITHM; EM; EXTRACTION; SUPERPIXEL; SELECTION;
D O I
10.3390/rs11080911
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gaussian mixture model (GMM) has been one of the most representative models for hyperspectral unmixing while considering endmember variability. However, the GMM unmixing models only have proper smoothness and sparsity prior constraints on the abundances and thus do not take into account the possible local spatial correlation. When the pixels that lie on the boundaries of different materials or the inhomogeneous region, the abundances of the neighboring pixels do not have those prior constraints. Thus, we propose a novel GMM unmixing method based on superpixel segmentation (SS) and low-rank representation (LRR), which is called GMM-SS-LRR. we adopt the SS in the first principal component of HSI to get the homogeneous regions. Moreover, the HSI to be unmixed is partitioned into regions where the statistical property of the abundance coefficients have the underlying low-rank property. Then, to further exploit the spatial data structure, under the Bayesian framework, we use GMM to formulate the unmixing problem, and put the low-rank property into the objective function as a prior knowledge, using generalized expectation maximization to solve the objection function. Experiments on synthetic datasets and real HSIs demonstrated that the proposed GMM-SS-LRR is efficient compared with other current popular methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior
    Wu, Feiyang
    Zheng, Yuhui
    Sun, Le
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 506 - 516
  • [22] Spatial Low-Rank Tensor Factorization and Unmixing of Hyperspectral Images
    Navas-Auger, William
    Manian, Vidya
    2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [23] Robust low-rank abundance matrix estimation for hyperspectral unmixing
    Feng, Fan
    Zhao, Baojun
    Tang, Linbo
    Wang, Wenzheng
    Jia, Sen
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7406 - 7409
  • [24] Sparse and Low-Rank Constrained Tensor Factorization for Hyperspectral Image Unmixing
    Zheng, Pan
    Su, Hongjun
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 1754 - 1767
  • [25] Low-Rank Tensor Modeling for Hyperspectral Unmixing Accounting for Spectral Variability
    Imbiriba, Tales
    Borsoi, Ricardo Augusto
    Moreira Bermudez, Jose Carlos
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1833 - 1842
  • [26] Coupled Sparse Denoising and Unmixing With Low-Rank Constraint for Hyperspectral Image
    Yang, Jingxiang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    Kong, Seong G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1818 - 1833
  • [27] Hyperspectral Sparse Unmixing With Spectral-Spatial Low-Rank Constraint
    Li, Fan
    Zhang, Shaoquan
    Liang, Bingkun
    Deng, Chengzhi
    Xu, Chenguang
    Wang, Shengqian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6119 - 6130
  • [28] Superpixel and low-rank double-sparse regression hyperspectral unmixing
    Zhang, Shuaiyang
    Hua, Wenshen
    Li, Gang
    Liu, Jie
    Wang, Qianghui
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
  • [29] Hyperspectral Unmixing with Gaussian Mixture Model and Spatial Group Sparsity
    Jin, Qiwen
    Ma, Yong
    Pan, Erting
    Fan, Fan
    Huang, Jun
    Li, Hao
    Sui, Chenhong
    Mei, Xiaoguang
    REMOTE SENSING, 2019, 11 (20)
  • [30] An infinite Gaussian mixture model with its application in hyperspectral unmixing
    Deng, Shuiguang
    Xu, Yifei
    Li, Xiaoli
    He, Yong
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (04) : 1987 - 1997