RIEMANN-HILBERT PROBLEM FOR THE MOISIL-TEODORESCU SYSTEM IN MULTIPLE CONNECTED DOMAINS

被引:0
作者
Polunin, Viktor A. [1 ]
Soldatov, Alexandre P. [1 ]
机构
[1] Belgorod State Univ, Belgorod, Russia
关键词
Riemann-Gilbert problem; elliptic system; integral of Cauchy type; Fredholm integral operator; Moisil-Teodorescu system;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we obtain a new integral representation of the general solution of the Moisil-Teodorescu system in a multiply connected domain. Also we give applications of this representation to Riemann-Hilbert problem.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 11 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]  
[Anonymous], 1962, Multidimensional Singular Integrals and Integral Equations
[3]  
Bitsadze A. V., 1953, IZV AKAD NAUK SSSR M, V17
[4]  
Bitsadze A. V., 1955, SOOBSHCH AN GRUZSSR, V16, P177
[5]  
Bitsadze A. V., 1972, FDN THEORY ANAL FUNC
[6]  
Gilbarg D., 1989, ELLIPTIC PARTIAL DIF, P464
[7]   Three-Dimensional Analog of the Cauchy Type Integral [J].
Polunin, V. A. ;
Soldatov, A. P. .
DIFFERENTIAL EQUATIONS, 2011, 47 (03) :363-372
[8]  
Polunin V.A., 2017, DOKL RAN, V475, P192
[9]  
Polunin V. A., 2011, VEDOMOSTY BSU, V5, P84
[10]  
Shevchenko V. I., 1970, SBORN MATH PHYS KIEV, V8, P172