Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation

被引:186
作者
Aharonov, Dorit [1 ]
van Dam, Wim [2 ]
Kempe, Julia [3 ]
Landau, Zeph [4 ]
Lloyd, Seth [5 ]
Regev, Oded [3 ]
机构
[1] Hebrew Univ Jerusalem, Sch Engn & Comp Sci, Jerusalem, Israel
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[4] CUNY City Coll, Dept Math, New York, NY 10031 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
欧洲研究理事会;
关键词
quantum computation; adiabatic computation; nearest neighbor interactions;
D O I
10.1137/080734479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The model of adiabatic quantum computation is a relatively recent model of quantum computation that has attracted attention in the physics and computer science communities. We describe an efficient adiabatic simulation of any given quantum circuit. This implies that the adiabatic computation model and the standard circuit-based quantum computation model are polynomially equivalent. Our result can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with nearest neighbor interactions. The equivalence between the models allows one to state the main open problems in quantum computation using well-studied mathematical objects such as eigenvectors and spectral gaps of Hamiltonians.
引用
收藏
页码:755 / 787
页数:33
相关论文
共 62 条
[1]   Robustness of the adiabatic quantum search -: art. no. 060312 [J].
Åberg, J ;
Kult, D ;
Sjöqvist, E .
PHYSICAL REVIEW A, 2005, 71 (06)
[2]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, D ;
van Dam, W ;
Kempe, J ;
Landau, Z ;
Lloyd, S ;
Regev, O .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :42-51
[3]  
Aharonov D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P20, DOI 10.1145/276698.276708
[4]  
AHARONOV D, 2002, QUANTUM NP SURVEY
[5]  
Aharonov D., 2003, P 35 ANN ACM S THEOR, P20, DOI [DOI 10.1145/780542.780546, 10.1145/780542. 780546 (p. 3, DOI 10.1145/780542.780546(P.3]
[6]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[7]   The power of quantum systems on a line [J].
Aharonov, Dorit ;
Gottesman, Daniel ;
Irani, Sandy ;
Kempe, Julia .
48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, :373-+
[8]  
AMBAINIS A, 2004, ELEMENTARY PROOF QUA
[9]  
[Anonymous], THESIS MIT
[10]  
APOLLONI B, 1988, P ASC LOC C, P97