Duality of Floating and Illumination Bodies

被引:0
作者
Mordhorst, Olaf [1 ]
Werner, Elisabeth M. [2 ,3 ]
机构
[1] Tech Univ Wien, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[3] Univ Lille, UFR Math, F-59655 Villeneuve Dascq, France
基金
美国国家科学基金会;
关键词
Floating bodies; illumination bodies; AFFINE SURFACE; CONVEX-BODIES; RANDOM POLYTOPES; BOUNDARY; APPROXIMATION; REGULARITY; NUMBER; BODY;
D O I
10.1512/iumj.2020.69.7973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a duality relation between floating and illumination bodies. The definitions of these two bodies suggest that the polar of the floating body should be similar to the illumination body of the polar. We consider this question for the class of centrally symmetric convex bodies. We provide precise estimates for B-p(n) and for centrally symmetric convex bodies with everywhere positive Gauss curvature. Our estimates show that equality of the polar of the floating body and the illumination body of the polar can only be achieved in the case of ellipsoids.
引用
收藏
页码:1507 / 1541
页数:35
相关论文
共 50 条
[41]   The Bodies of Stage Dance: The Duality Between the "Sentient-Body" and the "Aseptic-Body" as a Tool of Analysis [J].
de la Hoz, Iker Gomez .
CALLE 14-REVISTA DE INVESTIGACION EN EL CAMPO DEL ARTE, 2025, 20 (37) :223-237
[42]   Analyses of velocity field and energy transmission in the interaction between adjacent twin floating bodies and waves [J].
Chen, Xuebin ;
Zhan, Jiemin ;
Su, Wei .
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2017, 17 (04) :221-231
[43]   Surrogate modeling of hydrodynamic forces between multiple floating bodies through a hierarchical interaction decomposition [J].
Zhang, Jize ;
Taflanidis, Alexandros A. ;
Scruggs, Jeffrey T. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 408
[44]   Constrained convex bodies with extremal affine surface areas [J].
Giladi, O. ;
Huang, H. ;
Schuett, C. ;
Werner, E. M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (03)
[45]   Analysis of second order steady hydrodynamic forces on floating bodies in regular waves by finite element method [J].
Sathyapal, S ;
Bhattacharyya, SK ;
Vendhan, CP .
PROCEEDINGS OF THE NINTH (1999) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 1999, 1999, :504-510
[46]   A 3D parallel particle-in-cell solver for extreme wave interaction with floating bodies [J].
Chen, Qiang ;
Zang, Jun ;
Ning, Dezhi ;
Blenkinsopp, Chris ;
Gao, Junliang .
OCEAN ENGINEERING, 2019, 179 :1-12
[47]   Floating of solid non-magnetic bodies in magnetic fluids: Comprehensive analysis in the framework of inductive approach [J].
Ivanov, Aleksey S. ;
Pshenichnikov, Alexandr F. ;
Khokhryakova, Christina A. .
PHYSICS OF FLUIDS, 2020, 32 (11)
[48]   The spherical convex floating body [J].
Besau, Florian ;
Werner, Elisabeth M. .
ADVANCES IN MATHEMATICS, 2016, 301 :867-901
[49]   Geometric Representation of Classes of Concave Functions and Duality [J].
Ivanov, Grigory ;
Werner, Elisabeth M. .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
[50]   Floating of dia-, para-, and superparamagnetic bodies in magnetic fluids: Analysis of wall effects in the framework of inductive approach [J].
Ivanov, Aleksey S. ;
Pshenichnikov, Alexandr F. ;
Khokhryakova, Christina A. ;
Somov, Sergey A. ;
Koskov, Mikhail A. .
PHYSICS OF FLUIDS, 2021, 33 (11)