Duality of Floating and Illumination Bodies

被引:0
作者
Mordhorst, Olaf [1 ]
Werner, Elisabeth M. [2 ,3 ]
机构
[1] Tech Univ Wien, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[3] Univ Lille, UFR Math, F-59655 Villeneuve Dascq, France
基金
美国国家科学基金会;
关键词
Floating bodies; illumination bodies; AFFINE SURFACE; CONVEX-BODIES; RANDOM POLYTOPES; BOUNDARY; APPROXIMATION; REGULARITY; NUMBER; BODY;
D O I
10.1512/iumj.2020.69.7973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a duality relation between floating and illumination bodies. The definitions of these two bodies suggest that the polar of the floating body should be similar to the illumination body of the polar. We consider this question for the class of centrally symmetric convex bodies. We provide precise estimates for B-p(n) and for centrally symmetric convex bodies with everywhere positive Gauss curvature. Our estimates show that equality of the polar of the floating body and the illumination body of the polar can only be achieved in the case of ellipsoids.
引用
收藏
页码:1507 / 1541
页数:35
相关论文
共 50 条
[31]   Halfspace depth and floating body [J].
Nagy, Stanislav ;
Schuett, Carsten ;
Werner, Elisabeth M. .
STATISTICS SURVEYS, 2019, 13 :52-118
[32]   A boundary element method for the hydrodynamic analysis of floating bodies in variable bathymetry regions [J].
Belibassakis, K. A. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2008, 32 (10) :796-810
[33]   Numerical modeling of floating bodies transport for flooding analysis in nuclear reactor building [J].
Wang, Zidi ;
Hu, Fangyuan ;
Duan, Guangtao ;
Shibata, Kazuya ;
Koshizuka, Seiichi .
NUCLEAR ENGINEERING AND DESIGN, 2019, 341 :390-405
[34]   A novel numerical method for the hydrodynamic analysis of floating bodies over a sloping bottom [J].
Liu, Xiaolei ;
Miao, Quanming ;
Wang, Xuefeng ;
Xu, Shengwen ;
Fan, Huiqu .
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2021, 26 (04) :1198-1216
[35]   Floating bodies: elements for the discussion of the students who are learning in the early years of elementary school [J].
Longhini, Marcos Daniel ;
Tenorio Nunes, Maria Betania ;
Grillo, Gabriella Alves .
REVISTA BRASILEIRA DE ENSINO DE FISICA, 2011, 33 (03)
[36]   A numerical tool for the frequency domain simulation of large arrays of identical floating bodies in waves [J].
Flavia, F. Fabregas ;
McNatt, C. ;
Rongere, F. ;
Babarit, A. ;
Clement, A. H. .
OCEAN ENGINEERING, 2018, 148 :299-311
[37]   Trapped modes around freely floating bodies in a two-layer fluid channel [J].
Cal, Filipe S. ;
Dias, Goncalo A. S. ;
Videman, Juha H. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2170)
[38]   SPH for 3D floating bodies using variable mass particle distribution [J].
Omidvar, Pourya ;
Stansby, Peter K. ;
Rogers, Benedict D. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (04) :427-452
[39]   On the volume ratio of projections of convex bodies [J].
Galicer, Daniel ;
Litvak, Alexander E. ;
Merzbacher, Mariano ;
Pinasco, Damian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (03)
[40]   A Cartesian cut cell based two-way strong fluid-solid coupling algorithm for 2D floating bodies [J].
Chen, Qiang ;
Zang, Jun ;
Dimakopoulos, Aggelos S. ;
Kelly, David M. ;
Williams, Chris J. K. .
JOURNAL OF FLUIDS AND STRUCTURES, 2016, 62 :252-271