Duality of Floating and Illumination Bodies

被引:0
|
作者
Mordhorst, Olaf [1 ]
Werner, Elisabeth M. [2 ,3 ]
机构
[1] Tech Univ Wien, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[3] Univ Lille, UFR Math, F-59655 Villeneuve Dascq, France
基金
美国国家科学基金会;
关键词
Floating bodies; illumination bodies; AFFINE SURFACE; CONVEX-BODIES; RANDOM POLYTOPES; BOUNDARY; APPROXIMATION; REGULARITY; NUMBER; BODY;
D O I
10.1512/iumj.2020.69.7973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a duality relation between floating and illumination bodies. The definitions of these two bodies suggest that the polar of the floating body should be similar to the illumination body of the polar. We consider this question for the class of centrally symmetric convex bodies. We provide precise estimates for B-p(n) and for centrally symmetric convex bodies with everywhere positive Gauss curvature. Our estimates show that equality of the polar of the floating body and the illumination body of the polar can only be achieved in the case of ellipsoids.
引用
收藏
页码:1507 / 1541
页数:35
相关论文
共 50 条
  • [1] Floating and Illumination Bodies for Polytopes: Duality Results
    Mordhorst, Olaf
    Werner, Elisabeth M.
    DISCRETE ANALYSIS, 2019,
  • [2] Ulam floating bodies
    Huang, Han
    Slomka, Boaz A.
    Werner, Elisabeth M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 425 - 446
  • [3] Separation bodies: a conceptual dual to floating bodies
    Schneider, Rolf
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (01): : 157 - 170
  • [4] Floating bodies and approximation of convex bodies by polytopes
    Werner, Elisabeth M.
    PROBABILITY SURVEYS, 2022, 19 : 113 - 128
  • [5] On bodies floating in equilibrium in every orientation
    Ryabogin, Dmitry
    GEOMETRIAE DEDICATA, 2023, 217 (04)
  • [6] Archimedes' principle of flotation and floating bodies: construction, extensions and related problems
    Liu, Chunyan
    Werner, Elisabeth M.
    Ye, Deping
    Zhang, Ning
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (01) : 237 - 256
  • [7] On the illumination of centrally symmetric cap bodies in small dimensions
    Ivanov, Ilya
    Strachan, Cameron
    JOURNAL OF GEOMETRY, 2021, 112 (01)
  • [8] Flag numbers and floating bodies
    Besau, Florian
    Schuett, Carsten
    Werner, Elisabeth M.
    ADVANCES IN MATHEMATICS, 2018, 338 : 912 - 952
  • [9] Approximation of smooth convex bodies by random polytopes
    Grote, Julian
    Werner, Elisabeth
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [10] WEIGHTED FLOATING BODIES AND POLYTOPAL APPROXIMATION
    Besau, Florian
    Ludwig, Monika
    Werner, Elisabeth M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 7129 - 7148