A quantitative central limit theorem for the random walk among random conductances

被引:13
作者
Mourrat, Jean-Christophe [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2012年 / 17卷
关键词
Random walk among random conductances; central limit theorem; Berry-Esseen estimate; homogenization; QUENCHED INVARIANCE-PRINCIPLES; REVERSIBLE MARKOV-PROCESSES; DIFFUSION; HOMOGENIZATION; PERCOLATION; FUNCTIONALS; DISCRETE;
D O I
10.1214/EJP.v17-2414
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the random walk among random conductances on Z(d). We assume that the conductances are independent, identically distributed and uniformly bounded away from 0 and infinity. We obtain a quantitative version of the central limit theorem for this random walk, which takes the form of a Berry-Esseen estimate with speed t(-1/10) for d <= 2, and speed t(-1/5) for d >= 3, up to logarithmic corrections.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 34 条
[1]   Invariance principle for the random conductance model [J].
Andres, S. ;
Barlow, M. T. ;
Deuschel, J. -D. ;
Hambly, B. M. .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) :535-580
[2]  
[Anonymous], 1892, London, V34, P481, DOI [10.1080/14786449208620364, DOI 10.1080/14786449208620364]
[3]  
[Anonymous], 1978, DOKL AKAD NAUK SSSR
[4]   INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL WITH UNBOUNDED CONDUCTANCES [J].
Barlow, M. T. ;
Deuschel, J-D. .
ANNALS OF PROBABILITY, 2010, 38 (01) :234-276
[5]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[6]   Quenched invariance principle for simple random walk on percolation clusters [J].
Berger, Noam ;
Biskup, Marek .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) :83-120
[7]   Functional CLT for random walk among bounded random conductances [J].
Biskup, Marek ;
Prescott, Timothy M. .
ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 :1323-1348
[8]   TAIL ESTIMATES FOR HOMOGENIZATION THEOREMS IN RANDOM MEDIA [J].
Boivin, Daniel .
ESAIM-PROBABILITY AND STATISTICS, 2009, 13 :51-69
[9]   Approximations of effective coefficients in stochastic homogenization [J].
Bourgeat, A ;
Piatnitski, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (02) :153-165
[10]   Finite volume approximation of the effective diffusion matrix: The case of independent bond disorder [J].
Caputo, P ;
Ioffe, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (03) :505-525