Hamilton-Jacobi Formalism to Podolsky Electromagnetic Theory on the Null-Plane

被引:0
作者
Bertin, M. C. [1 ]
Pimentel, B. M. [2 ]
Zambrano, G. E. R. [3 ]
机构
[1] Univ Fed ABC, CMCC, Rua Santa Adelia 166, Santo Andre, SP, Brazil
[2] UNESP Sao Paulo State Univ, Inst Fis Teor, Sao Paulo, Brazil
[3] Univ Narino, Dept Fis, Pasto, Colombia
来源
XII HADRON PHYSICS | 2013年 / 1520卷
基金
巴西圣保罗研究基金会;
关键词
Hamilton-Jacobi Formalism; Podolsky Electromagnetic Theory; Null-Plane; SYSTEMS; GAUGE;
D O I
10.1063/1.4796009
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this work we develop the Hamilton - Jacobi formalism to study the Podolsky electromagnetic theory on the null-plane coordinates. We calculate the generators of the Podolsky theory and check the integrability conditions. Appropriate boundary conditions are introduced to assure uniqueness of the Green functions associated to the differential operators. Non-involutive constraints in the Hamilton-Jacobi formalism are eliminated by constructing their respective generalized brackets.
引用
收藏
页码:391 / 393
页数:3
相关论文
共 7 条
  • [1] Hamilton-Jacobi approach for first order actions and theories with higher derivatives
    Bertin, M. C.
    Pimentel, B. M.
    Pompeia, P. J.
    [J]. ANNALS OF PHYSICS, 2008, 323 (03) : 527 - 547
  • [2] The canonical structure of Podolsky's generalized electrodynamics on the null-plane
    Bertin, M. C.
    Pimentel, B. M.
    Zambrano, G. E. R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (10)
  • [3] Bertin MC, 2010, AIP CONF PROC, V1296, P398, DOI 10.1063/1.3523216
  • [4] Non-involutive constrained systems and Hamilton-Jacobi formalism
    Bertin, M. C.
    Pimentel, B. M.
    Valcarcel, C. E.
    [J]. ANNALS OF PHYSICS, 2008, 323 (12) : 3137 - 3149
  • [5] Second order gauge theory
    Cuzinatto, R. R.
    de Melo, C. A. M.
    Pompeia, P. J.
    [J]. ANNALS OF PHYSICS, 2007, 322 (05) : 1211 - 1232
  • [6] Pimentel BM, 1996, NUOVO CIMENTO B, V111, P841, DOI 10.1007/BF02749015
  • [7] REVIEW OF A GENERALIZED ELECTRODYNAMICS
    PODOLSKY, B
    SCHWED, P
    [J]. REVIEWS OF MODERN PHYSICS, 1948, 20 (01) : 40 - 50