Forced oscillation of fractional differential equations via conformable derivatives with damping term

被引:15
作者
Aphithana, Aphirak [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok, Thailand
[2] Univ Ioannina, Dept Math, Ioannina, Greece
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah, Saudi Arabia
关键词
Forced oscillation; Oscillation theory; Fractional differential equations; Fractional conformable integrals; Fractional conformable derivatives; Damping; COUPLED SYSTEM; EXISTENCE; INCLUSIONS;
D O I
10.1186/s13661-019-1162-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the properties of nonlocal fractional calculus generated by conformable derivatives, we establish some sufficient conditions for oscillation of all solutions for fractional differential equations with damping term. Forced oscillation of conformable differential equations in the frame of Riemann, as well as of Caputo type, is established. Examples are provided to demonstrate the effectiveness of the main results.
引用
收藏
页数:16
相关论文
共 31 条
  • [11] A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 52 : 9 - 14
  • [12] Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 615 - 622
  • [13] Boundary Value Problems for q-Difference Inclusions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [14] Zero mass case for a fractional Berestycki-Lions-type problem
    Ambrosio, Vincenzo
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (03) : 365 - 374
  • [15] [Anonymous], 2018, J COMPUT ANAL APPL
  • [16] Existence results for fractional order functional differential equations with infinite delay
    Benchohra, A.
    Henderson, J.
    Ntouyas, S. K.
    Ouahab, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1340 - 1350
  • [17] Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Lasiecka, Irena
    Webler, Claudete M.
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (02) : 121 - 145
  • [18] Forced oscillation of certain fractional differential equations
    Chen, Da-Xue
    Qu, Pei-Xin
    Lan, Yong-Hong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [19] Denton Z, 2017, OPUSC MATH, V37, P705, DOI 10.7494/OpMath.2017.37.5.705
  • [20] Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
    Diethelm, Kai
    [J]. ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 : 3 - +