On the generalized Cramer-Rao bound for the estimation of the location

被引:8
|
作者
Batalama, SN [1 ]
Kazakos, D [1 ]
机构
[1] UNIV SW LOUISIANA,DEPT ELECT & COMP ENGN,LAFAYETTE,LA 70504
关键词
D O I
10.1109/78.554315
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is shown that the generalized Gaussian distribution maximizes the generalized Cramer-Rao (CR) bound for the pth absolute central moment of any classical location parameter unbiased estimator. The underlying maximization is taken over the class of distributions with fixed and finite pth-order moment and exhibits particular utility in minimax designs as well as in worst-case performance analysis. The relationship between the generalized Gaussian density and the generalized CR bound is further examined for the model of a mixture of generalized Gaussian distributions as web as for scenarios where multiple independent generalized Gaussian observations are involved.
引用
收藏
页码:487 / 492
页数:6
相关论文
共 50 条
  • [1] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [2] THE HYBRID CRAMER-RAO BOUND AND THE GENERALIZED GAUSSIAN LINEAR ESTIMATION PROBLEM
    Noam, Y.
    Messer, H.
    2008 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2008, : 395 - 399
  • [3] On the Cramer-Rao Bound of Autoregressive Estimation in Noise
    Weruaga, Luis
    Melko, O. Michael
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 373 - 376
  • [4] DOPPLER FREQUENCY ESTIMATION AND THE CRAMER-RAO BOUND
    BAMLER, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (03): : 385 - 390
  • [5] Cramer-Rao bound for joint estimation problems
    Ijyas, V. P. Thafasal
    Sameer, S. M.
    ELECTRONICS LETTERS, 2013, 49 (06) : 427 - 428
  • [6] CRAMER-RAO BOUND FOR LOCATION SYSTEMS IN MULTIPATH ENVIRONMENTS
    RENDAS, MJD
    MOURA, JMF
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (12) : 2593 - 2610
  • [7] A generalized Cramer-Rao lower bound for moving arrays
    Sullivan, Edmund J.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 125 (02): : EL51 - EL57
  • [8] The Cramer-Rao bound for the estimation of noisy phase signals
    Zoubir, AM
    Taleb, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3101 - 3104
  • [9] Cramer-Rao bound for bearing estimation with bias correction
    Xu, Wen
    2007 OCEANS, VOLS 1-5, 2007, : 1894 - 1898
  • [10] The modified Cramer-Rao bound in vector parameter estimation
    Gini, F
    Reggiannini, R
    Mengali, U
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (01) : 52 - 60