A remark on optimal weighted Poincare inequalities for convex domains

被引:30
作者
Ferone, V. [1 ]
Nitsch, C. [1 ]
Trombetti, C. [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy
关键词
Poincare inequalities; p-Laplacian eigenvalues; Wirtinger inequalities; 1ST EIGENVALUE; ISOPERIMETRIC-INEQUALITIES; EIGENFUNCTIONS;
D O I
10.4171/RLM/640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a sharp upper bound on convex domains, in terms of the diameter alone, of the best constant in a class of weighted Poincare inequalities. The key point is the study of an optimal weighted Wirtinger inequality.
引用
收藏
页码:467 / 475
页数:9
相关论文
共 34 条
  • [1] An optimal Poincare inequality in L1 for convex domains
    Acosta, G
    Durán, RG
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 195 - 202
  • [2] [Anonymous], 2011, Sobolev Spaces
  • [3] [Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
  • [4] Bebendorf M, 2003, Z ANAL ANWEND, V22, P751
  • [5] Basis properties of eigenfunctions of the p-Laplacian
    Binding, Paul
    Boulton, Lyonell
    Cepicka, Jan
    Drabek, Pavel
    Girg, Petr
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3487 - 3494
  • [6] Sharp Estimates for Eigenfunctions of a Neumann Problem
    Brandolini, B.
    Chiacchio, F.
    Trombetti, C.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (11) : 1317 - 1337
  • [7] A symmetrization result for Monge-Ampere type equations
    Brandolini, Barbara
    Trombetti, Cristina
    [J]. MATHEMATISCHE NACHRICHTEN, 2007, 280 (5-6) : 467 - 478
  • [8] Weighted isoperimetric inequalities in cones and applications
    Brock, F.
    Chiacchio, F.
    Mercaldo, A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (15) : 5737 - 5755
  • [9] Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space
    Chiacchio, F.
    Di Blasio, G.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (02): : 199 - 216
  • [10] Estimates of best constants for weighted Poincare inequalities on convex domains
    Chua, Seng-Kee
    Wheeden, Richard L.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 93 : 197 - 226