Horseshoe templates with global torsion in a driven laser

被引:28
作者
Boulant, G
Lefranc, M
Bielawski, S
Derozier, D
机构
[1] Laboratoire de Spectroscopie Hertzienne, URA CNRS 249, Centre d'Études et de Recherches Lasers et Applications
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.5082
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a topological analysis of chaotic signals from a Nd-doped fiber laser with pump modulation al different values of the modulation frequency. In this experiment, the system displays chaotic behavior in three regions C-1/4, C-1/3, and C-1/2 of parameter space, located around the subharmonics omega(r)/4, omega(r)/3, and omega(r)/2 of the relaxation frequency omega(r). We observe that the topological structures of the chaotic regimes inside a given region Cli, are described by the same template. However, templates corresponding to different regions display different global torsions theta g, which we find to be related to the order of the subharmonics by theta(g)(C-1/n) = n-1.
引用
收藏
页码:5082 / 5091
页数:10
相关论文
共 29 条
[1]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[2]   ANTIPHASE DYNAMICS AND POLARIZATION EFFECTS IN THE ND-DOPED FIBER LASER [J].
BIELAWSKI, S ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW A, 1992, 46 (05) :2811-2822
[3]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[4]  
BOULANT G, IN PRESS INT J BIFUR
[5]   AN IMPROVED METHOD FOR ESTIMATING LIAPUNOV EXPONENTS OF CHAOTIC TIME-SERIES [J].
BRIGGS, K .
PHYSICS LETTERS A, 1990, 151 (1-2) :27-32
[6]   DYNAMIC BEHAVIOR OF A DOPED FIBER LASER UNDER PUMP MODULATION [J].
DEROZIER, D ;
BIELAWSKI, S ;
GLORIEUX, P .
OPTICS COMMUNICATIONS, 1991, 83 (1-2) :97-102
[7]  
FIRLE SO, 1995, PHYS REV E, V53, P1257
[8]   STRUCTURE IN THE BIFURCATION DIAGRAM OF THE DUFFING OSCILLATOR [J].
GILMORE, R ;
MCCALLUM, JWL .
PHYSICAL REVIEW E, 1995, 51 (02) :935-956
[9]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[10]  
Hao B. L., 1989, ELEMENTARY SYMBOLIC