Bezier control points method to solve constrained quadratic optimal control of time varying linear systems

被引:19
作者
Ghomanjani, F. [1 ]
Farahi, M. H. [1 ]
Gachpazan, M. [1 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, Mashhad, Iran
关键词
Bezier control points; constrained optimal control; linear time varying dynamical systems; LEAST-SQUARES METHODS;
D O I
10.1590/S1807-03022012000300001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computational method based on Bezier control points is presented to solve optimal control problems governed by time varying linear dynamical systems subject to terminal state equality constraints and state inequality constraints. The method approximates each of the system state variables and each of the control variables by a Bezier curve of unknown control points. The new approximated problems converted to a quadratic programming problem which can be solved more easily than the original problem. Some examples are given to verify the efficiency and reliability of the proposed method.
引用
收藏
页码:433 / 456
页数:24
相关论文
共 20 条
[1]   THE PSEUDOSPECTRAL LEGENDRE METHOD FOR DISCRETIZING OPTIMAL-CONTROL PROBLEMS [J].
ELNAGAR, G ;
KAZEMI, MA ;
RAZZAGHI, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (10) :1793-1796
[2]  
Elnagar GN, 1997, OPTIM CONTR APPL MET, V18, P227, DOI 10.1002/(SICI)1099-1514(199705/06)18:3<227::AID-OCA598>3.0.CO
[3]  
2-A
[4]   Least squares methods for solving singularly perturbed two-point boundary value problems using Bezier control points [J].
Evrenosoglu, M. ;
Somali, S. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (10) :1029-1032
[5]  
FRICK PA, 1995, OPTIM CONTR APPL MET, V16, P1
[6]   Solving of time varying quadratic optimal control problems by using Bezier control points [J].
Gachpazan, Mortaza .
COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (02) :367-379
[7]   Spectral method for constrained linear-quadratic optimal control [J].
Jaddu, H .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (02) :159-169
[8]   SUBOPTIMAL CONTROL ALGORITHM FOR CONSTRAINED PROBLEMS USING CUBIC SPLINES [J].
NEUMAN, CP ;
SEN, A .
AUTOMATICA, 1973, 9 (05) :601-613
[9]  
Pytlak R., 1999, NUMERICAL METHODS OP
[10]   A LEGENDRE TECHNIQUE FOR SOLVING TIME-VARYING LINEAR-QUADRATIC OPTIMAL-CONTROL PROBLEMS [J].
RAZZAGHI, M ;
ELNAGAR, G .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1993, 330 (03) :453-463