A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

被引:1776
作者
Oulton, R. F. [1 ]
Sorger, V. J. [1 ]
Genov, D. A. [1 ]
Pile, D. F. P. [1 ]
Zhang, X. [1 ]
机构
[1] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphoton.2008.131
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The emerging field of nanophotonics(1) addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons(2,3) are among the most promising candidates for subwavelength optical confinement(3-10). However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands(3,11-13). Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables 'capacitor-like' energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40-150 mm) with strong mode confinement ( ranging from lambda(2)/400 to lambda(2)/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics.
引用
收藏
页码:496 / 500
页数:5
相关论文
共 30 条
[1]   All-optical control of light on a silicon chip [J].
Almeida, VR ;
Barrios, CA ;
Panepucci, RR ;
Lipson, M .
NATURE, 2004, 431 (7012) :1081-1084
[2]   Guiding and confining light in void nanostructure [J].
Almeida, VR ;
Xu, QF ;
Barrios, CA ;
Lipson, M .
OPTICS LETTERS, 2004, 29 (11) :1209-1211
[3]   Ultrafast photonic crystal nanocavity laser [J].
Altug, Hatice ;
Englund, Dirk ;
Vuckovic, Jelena .
NATURE PHYSICS, 2006, 2 (07) :484-488
[4]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[5]  
Boardman A.D., 1982, Electromagnetic Surface Modes
[6]   Channel plasmon-polariton guiding by subwavelength metal grooves [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Ebbesen, TW .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[7]   Figures of merit for 2D surface plasmon waveguides and application to metal stripes [J].
Buckley, Robin ;
Berini, Pierre .
OPTICS EXPRESS, 2007, 15 (19) :12174-12182
[8]   Single-mode photonic band gap guidance of light in air [J].
Cregan, RF ;
Mangan, BJ ;
Knight, JC ;
Birks, TA ;
Russell, PS ;
Roberts, PJ ;
Allan, DC .
SCIENCE, 1999, 285 (5433) :1537-1539
[9]   Surface plasmon amplification in planar metal films [J].
Genov, Dentcho A. ;
Ambati, Muralidhar ;
Zhang, Xiang .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (11-12) :1104-1108
[10]   Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides [J].
Govyadinov, Alexander A. ;
Podolskiy, Viktor A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (22)