Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

被引:20
作者
Jimenez, R. [1 ]
Sanchez-Raya, M. [1 ]
Gomez-Galan, J. A. [1 ]
Flores, J. L. [2 ]
Duenas, J. A. [3 ]
Martel, I. [3 ]
机构
[1] Univ Huelva, Dept Ingn Eletron Sistemas Informat & Automat, Huelva 21071, Spain
[2] Univ Huelva, Dept Ingn Elect & Term, Huelva 21071, Spain
[3] Univ Huelva, Dept Fis Aplicada, Huelva 21071, Spain
关键词
Particle identification; Silicon detectors; Pulse shape analysis; Multilayer perceptron; FPGA; DISCRIMINATION;
D O I
10.1016/j.nima.2012.01.034
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using C-12,C-13 ions produced in heavy ion reactions. The actual latency of the system is about 20 mu s when using a clock frequency of 50 MHz. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2011, PicoBlaze 8-bit Embedded Microcontroller User Guide
[2]  
[Anonymous], SPARTAN 3AN FPGA FAM
[3]   Progresses in the pulse shape identification with silicon detectors within the FAZIA Collaboration [J].
Bardelli, L. ;
Bini, M. ;
Casini, G. ;
Edelbruck, P. ;
Pasquali, G. ;
Poggi, G. ;
Barlini, S. ;
Berjillos, R. ;
Borderie, B. ;
Bougault, R. ;
Bruno, M. ;
Carboni, S. ;
Chbihi, A. ;
D'Agostino, M. ;
Duenas, J. A. ;
Gautier, J. M. ;
Gramegna, F. ;
Huss, C. ;
Kordyasz, A. J. ;
Kozik, T. ;
Kravchuk, V. L. ;
Le Neindre, N. ;
Lopez, O. ;
Martel, I. ;
Morelli, L. ;
Ordine, A. ;
Rivet, M. F. ;
Rosato, E. ;
Scarlini, E. ;
Spadaccini, G. ;
Tobia, G. ;
Vigilante, M. ;
Wanlin, E. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 654 (01) :272-278
[4]   A method for non-destructive resistivity mapping in silicon detectors [J].
Bardelli, L. ;
Poggi, G. ;
Pasquali, G. ;
Bini, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 602 (02) :501-505
[5]   New digital techniques applied to A and Z identification using pulse shape discrimination of silicon detector current signals [J].
Barlini, S. ;
Bougault, R. ;
Laborie, Ph. ;
Lopez, O. ;
Mercier, D. ;
Parlog, M. ;
Tamain, B. ;
Vient, E. ;
Chevallier, E. ;
Chbihi, A. ;
Jacquot, B. ;
Kravchuk, V. L. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 600 (03) :644-650
[6]  
Beale M.H., NEURAL NETWORK TOOLB
[7]  
Flores J.L, APPL NEURAL NE UNPUB
[8]   Charge and current-sensitive preamplifiers for pulse shape discrimination techniques with silicon detectors [J].
Hamrita, H ;
Rauly, E ;
Blumenfeld, Y ;
Borderie, B ;
Chabot, M ;
Edelbruck, P ;
Lavergne, L ;
Le Bris, J ;
Legou, T ;
Le Neindre, N ;
Richard, A ;
Rivet, MF ;
Scarpaci, JA ;
Tillier, J ;
Barbey, S ;
Becheva, E ;
Bocage, F ;
Bougault, R ;
Bzyl, R ;
Grévy, S ;
Carniol, B ;
Cussol, D ;
Désesquelles, P ;
Etasse, D ;
Galichet, E ;
Grévy, S ;
Guinet, D ;
Lalu, G ;
Lanzalone, G ;
Lautesse, P ;
Lopez, O ;
Martinet, G ;
Pierre, S ;
Politi, G ;
Rosato, E ;
Tamain, B ;
Vient, E .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 531 (03) :607-615
[9]  
I.S.E. WebPack Design Software, WEBPACK DES SOFTW
[10]   Statistical pattern recognition: A review [J].
Jain, AK ;
Duin, RPW ;
Mao, JC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (01) :4-37