Evaluating latent class analysis models in qualitative phenotype identification

被引:444
|
作者
Yang, CC [1 ]
机构
[1] Natl Taichung Teachers Coll, Grad Sch Educ Measurement & Stat, Taichung 403, Taiwan
关键词
phenotype identifications; latent class analysis; information criteria; model selections; E-M algorithm;
D O I
10.1016/j.csda.2004.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper is aimed to investigate the performance of information criteria in selecting latent class analysis models which are often used in research of phenotype identification. Six information criteria and a sample size adjustment (Psychometrika 52 (1987) 333) are compared under various sample sizes and model dimensionalities. The simulation design is particularly meaningful for phenotypic research in practice. Results show that improvements by the sample size adjustment are considerable. In addition, the sample size and model dimensionality effects are found to be influential in the simulation study. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1090 / 1104
页数:15
相关论文
共 50 条
  • [41] Latent Class Analysis for Developmental Research
    Lanza, Stephanie T.
    Cooper, Brittany R.
    CHILD DEVELOPMENT PERSPECTIVES, 2016, 10 (01) : 59 - 64
  • [42] Multilevel Latent Class Models with Dirichlet Mixing Distribution
    Di, Chong-Zhi
    Bandeen-Roche, Karen
    BIOMETRICS, 2011, 67 (01) : 86 - 96
  • [43] Latent class analysis of respondent scalability
    Van Den Wittenboer, G
    Hox, JJ
    De Leeuw, ED
    QUALITY & QUANTITY, 2000, 34 (02) : 177 - 191
  • [44] Causal Inference in Latent Class Analysis
    Lanza, Stephanie T.
    Coffman, Donna L.
    Xu, Shu
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2013, 20 (03) : 361 - 383
  • [45] Latent class analysis of the metabolic syndrome
    Boyko, Edward J.
    Doheny, Rebecca A.
    McNeely, Marguerite J.
    Kahn, Steven E.
    Leonetti, Donna L.
    Fujimoto, Wilfred Y.
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2010, 89 (01) : 88 - 93
  • [46] Latent Class Mixture models for analyzing rating responses
    Camilleri, Liberato
    7TH INDUSTRIAL SIMULATION CONFERENCE 2009, 2009, : 42 - 46
  • [47] Using Model-Based Clustering to Improve Qualitative Inquiry: Computer-Aided Qualitative Data Analysis, Latent Class Analysis, and Interpretive Transparency
    Mitchell, George E.
    Schmitz, Hans Peter
    VOLUNTAS, 2023, 34 (01): : 162 - 169
  • [48] Reconsidering Multilevel Latent Class Models: Can Level-2 Latent Classes Affect Item Response Probabilities?
    Wang, Yan
    Kim, Eunsook
    Joo, Seang-Hwane
    Chun, Seokjoon
    Alamri, Abeer
    Lee, Philseok
    Stark, Stephen
    JOURNAL OF EXPERIMENTAL EDUCATION, 2022, 90 (01): : 158 - 172
  • [49] Using Model-Based Clustering to Improve Qualitative Inquiry: Computer-Aided Qualitative Data Analysis, Latent Class Analysis, and Interpretive Transparency
    George E. Mitchell
    Hans Peter Schmitz
    VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 2023, 34 : 162 - 169
  • [50] Evaluating Diagnostic Tests for Helicobacter pylori Infection Without a Reference Standard: Use of Latent Class Analysis
    Jekarl, Dong Wook
    Choi, Hyunyu
    Kim, Ji Yeon
    Lee, Seungok
    Gweon, Tae Geun
    Lee, Hae Kyung
    Kim, Yonggoo
    ANNALS OF LABORATORY MEDICINE, 2020, 40 (01) : 68 - 71