Attached primes and annihilators of top local cohomology modules defined by a pair of ideals

被引:0
作者
Karimi, S. [1 ]
Payrovi, Sh. [2 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran 193953679, Iran
[2] Imam Khomeini Int Univ, Dept Math, Qazvin 3414916818, Iran
来源
ALGEBRA AND DISCRETE MATHEMATICS | 2020年 / 29卷 / 02期
关键词
associated prime ideals; attached prime ideals; top local cohomology modules; RESPECT;
D O I
10.12958/adm429
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that R is a complete Noetherian local ring and M is a non-zero finitely generated R-module of dimension n = dim(M) >= 1. It is shown that any non-empty subset T of Assh(M) can be expressed as the set of attached primes of the top local cohomology modules H-I,J(n)(M) for some proper ideals I, J of R. Moreover, for ideals I, J = boolean AND(p is an element of AttR(HIn (M))) p and J' of R it is proved that T = Att(R)(H-I,J(n) (M)) = Att(R)(H-I,J'(n) (M)) if and only if J' subset of J. Let H-I,J(n) (M) not equal 0. It is shown that there exists Q is an element of Supp(M) such that dim(R/Q) = 1 and H-Q(n) (R/p) 6= 0, for each p is an element of Att(R)(H-I,J(n) (M)). In addition, we prove that if I and J are two proper ideals of a Noetherian local ring R, then Ann(R)(H-I,J(n) (M)) = Ann(R)(M/T-R(I, J, M)), where T-R(I, J, M) is the largest submodule of M with cd(I, J, T-R(I, J, M)) < cd(I, J, M), here cd(I, J, M) is the cohomological dimension of M with respect to I and J. This result is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6].
引用
收藏
页码:211 / 220
页数:10
相关论文
共 13 条
  • [1] On the annihilators and attached primes of top local cohomology modules
    Atazadeh, Ali
    Sedghi, Monireh
    Naghipour, Reza
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (03) : 225 - 236
  • [2] On the annihilators of local cohomology modules
    Bahmanpour, Kamal
    A'zami, Jafar
    Ghasemi, Ghader
    [J]. JOURNAL OF ALGEBRA, 2012, 363 : 8 - 13
  • [3] BIJANZADEH MH, 1979, J LOND MATH SOC, V19, P402
  • [4] Bourbaki N., 1972, COMMUTATIVE ALGEBRA
  • [5] Brodmann M.P., 1998, Cambridge Studies in Advanced Mathematics, V60
  • [6] TOP LOCAL COHOMOLOGY MODULES WITH RESPECT TO A PAIR OF IDEALS
    Chu, Lizhong
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 777 - 782
  • [7] Some results on local cohomology modules defined by a pair of ideals
    Chu, Lizhong
    Wang, Qing
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (01): : 193 - 200
  • [8] Dibaei M. T., 2005, ARXIV0501063V1MATHAC
  • [9] Top local cohomology modules with specified attached primes
    Dibaei, Mohammad T.
    Jafari, Raheleh
    [J]. ALGEBRA COLLOQUIUM, 2008, 15 (02) : 341 - 344
  • [10] Attached primes of the top local cohomology modules with respect to an ideal
    Dibaei, MT
    Yassemi, S
    [J]. ARCHIV DER MATHEMATIK, 2005, 84 (04) : 292 - 297