Responses to changes in Ca2+ supply in two Mediterranean evergreens, Phillyrea latifolia and Pistacia lentiscus, during salinity stress and subsequent relief

被引:23
作者
Tattini, Massimiliano [1 ]
Traversi, Maria Laura [1 ]
机构
[1] CNR, Ist Valorizzaz Legno & Specie Arboree, IVALSA, I-50019 Florence, Italy
关键词
calcium-sodium interactions; gas exchange; Na allocation; Na uptake and transport; oxidative damage; Phillyrea latifolia; Pistacia lentiscus; polyphenols; PSII photochemistry; relief from salinity; water relations;
D O I
10.1093/aob/mcn134
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background and Aims Changes in root-zone Ca2+ concentration affect a plant's performance under high salinity, an issue poorly investigated for Mediterranean xerophytes, which may suffer from transient root-zone salinity stress in calcareous soils. It was hypothesized that high-Ca2+ supply may affect differentially the response to salinity stress of species differing in their strategy of Na+ allocation at organ level. Phillyrea latifolia and Pistacia lentiscus, which have been reported to greatly differ for Na+ uptake and transport rates to the leaves, were studied. Methods In plants exposed to 0 mM or 200 mM NaCl and supplied with 2.0 mM or 8.0 mM Ca2+, under 100% solar irradiance, measurements were conducted of (a) gas exchange, PSII photochemistry and plant growth; (b) water and ionic relations; (c) the activity of superoxide dismutase and the lipid peroxidation; and (d) the concentration of individual polyphenols. Gas exchange and plant growth were also estimated during a period of relief from salinity stress. Key Results The performance of Pistacia lentiscus decreased to a significantly smaller degree than that of Phillyrea latifolia because of high salinity. Ameliorative effects of high-Ca2+ supply were more evident in Phillyrea latifolia than in Pistacia lentiscus. High-Ca2+ reduced steeply the Na+ transport to the leaves in salt-treated Phillyrea latifolia, and allowed a faster recovery of gas exchange and growth rates as compared with low- Ca2+ plants, during the period of relief from salinity. Salt-induced biochemical adjustments, mostly devoted to counter salt-induced oxidative damage, were greater in Phillyrea latifolia than in Pistacia lentiscus. Conclusions An increased Ca2+ : Na+ ratio may be of greater benefit for Phillyrea latifolia than for Pistacia lentiscus, as in the former, adaptive mechanisms to high root-zone salinity are primarily devoted to restrict the accumulation of potentially toxic ions in sensitive shoot organs.
引用
收藏
页码:609 / 622
页数:14
相关论文
共 89 条
[1]   Chloroplast-located flavonoids can scavenge singlet oxygen [J].
Agati, Giovanni ;
Matteini, Paolo ;
Goti, Andrea ;
Tattini, Massimiliano .
NEW PHYTOLOGIST, 2007, 174 (01) :77-89
[2]   Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. [J].
Allakhverdiev, SI ;
Sakamoto, A ;
Nishiyama, Y ;
Inaba, M ;
Murata, N .
PLANT PHYSIOLOGY, 2000, 123 (03) :1047-1056
[3]  
[Anonymous], 1950, CIRCULAR
[4]   Carbohydrate translocation determines the phenolic content of Populus foliage:: a test of the sink-source model of plant defense [J].
Arnold, T ;
Appel, H ;
Patel, V ;
Stocum, E ;
Kavalier, A ;
Schultz, J .
NEW PHYTOLOGIST, 2004, 164 (01) :157-164
[5]   RESPONSES OF 3 ARID ZONE GRASS SPECIES TO VARYING NA/CA RATIOS IN SALINE SAND CULTURE [J].
ASHRAF, M ;
NAQVI, MI .
NEW PHYTOLOGIST, 1991, 119 (02) :285-290
[6]   THE INFLUENCE OF INCREASING RHIZOSPHERIC CALCIUM ON THE ABILITY OF LUPINUS-LUTEUS L TO CONTROL WATER-USE EFFICIENCY [J].
ATKINSON, CJ .
NEW PHYTOLOGIST, 1991, 119 (02) :207-215
[7]   Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba:: Implication of reactive oxygen species as common signals [J].
Babu, TS ;
Akhtar, TA ;
Lampi, MA ;
Tripuranthakam, S ;
Dixon, DG ;
Greenberg, BM .
PLANT AND CELL PHYSIOLOGY, 2003, 44 (12) :1320-1329
[8]  
Benavídes MP, 2000, AUST J PLANT PHYSIOL, V27, P273
[9]   ASSAYING FOR SUPEROXIDE-DISMUTASE ACTIVITY - SOME LARGE CONSEQUENCES OF MINOR CHANGES IN CONDITIONS [J].
BEYER, WF ;
FRIDOVICH, I .
ANALYTICAL BIOCHEMISTRY, 1987, 161 (02) :559-566
[10]   The role of calcium and activated oxygens as signals for controlling cross-tolerance [J].
Bowler, C ;
Fluhr, R .
TRENDS IN PLANT SCIENCE, 2000, 5 (06) :241-246