Total energy decay for semilinear wave equations with a critical potential type of damping

被引:15
作者
Ikehata, Ryo [1 ]
Inoue, Yu-ki [1 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
semilinear wave equation; unbounded domain; total energy decay; the finite propagation speed property;
D O I
10.1016/j.na.2007.06.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for semilinear wave equations with a critical potential type of damping coefficient (1 + vertical bar x vertical bar)(-1) in R-N and a power nonlinearity vertical bar u vertical bar p(-1) u. We shall derive total energy and L-p decay estimates in the case when the initial data have a compact support. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1396 / 1401
页数:6
相关论文
共 12 条
[1]  
Ikehata R., 2005, INT J PURE APPL MATH, V21, P19
[3]   Energy decay and asymptotic behavior of solutions to the wave equations with linear dissipation [J].
Mochizuki, K ;
Nakazawa, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1996, 32 (03) :401-414
[4]  
Mochizuki K., 1976, Publ. RIMS Kyoto Univ, V12, P383, DOI [10.2977/prims/1195190721, DOI 10.2977/PRIMS/1195190721]
[5]   Lp-Lq decay estimates for wave equations with time-dependent coefficients [J].
Reissig, M .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (04) :534-548
[6]  
STRAUSS WA, 1989, CBMS REGIONAL C SERI, V73
[7]  
TODOROVA G, J DIFFERENT IN PRESS
[8]  
Todorova G, 2007, CONTEMP MATH, V426, P317
[9]  
Uesaka H., 1980, J MATH KYOTO U, V20, P57
[10]   Wave equations with time-dependent dissipation I. Non-effective dissipation [J].
Wirth, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) :487-514