Locally Unsplit Families of Rational Curves of Large Anticanonical Degree on Fano Manifolds

被引:17
作者
Casagrande, Cinzia [1 ]
Druel, Stephane [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
关键词
VARIETIES; DIVISOR;
D O I
10.1093/imrn/rnv011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we address Fano manifolds of dimension n >= 3 with a locally unsplit dominating family of rational curves of anticanonical degree n. We first observe that their Picard number is at most 3, and then we provide a classification of all cases with maximal Picard number. We also give examples of locally unsplit dominating families of rational curves whose varieties of minimal tangents at a general point are singular.
引用
收藏
页码:10756 / 10800
页数:45
相关论文
共 32 条
[1]  
Andreatta M., 1997, Algebraic GeometrySanta Cruz, V62, P153
[2]  
[Anonymous], 1977, Graduate Texts in Mathematics
[3]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[4]   Rational curves of minimal degree and characterizations of projective spaces [J].
Araujo, Carolina .
MATHEMATISCHE ANNALEN, 2006, 335 (04) :937-951
[5]  
Beltrametti MC., 1995, de Gruyter Expositions in Mathematics, V16
[6]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[7]   Complex manifolds whose blow-up at a point is Fano [J].
Bonavero, L ;
Campana, F ;
Wisniewski, JA .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :463-468
[9]   MINIMAL RATIONAL CURVES ON COMPLETE TORIC MANIFOLDS AND APPLICATIONS [J].
Chen, Yifei ;
Fu, Baohua ;
Hwang, Jun-Muk .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (01) :111-123
[10]  
Cho K., 2002, Adv. Stud. Pure Math., V35, P1