Rayleigh-Taylor instability in accelerated solid media

被引:10
|
作者
Piriz, A. R. [1 ,2 ,3 ]
Sun, Y. B. [1 ,2 ,3 ]
Tahir, N. A. [4 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, CYTEMA, E-13071 Ciudad Real, Spain
[3] Univ Castilla La Mancha, Inst Invest Energet, E-13071 Ciudad Real, Spain
[4] GSI Helmholtzzentrum Schwerionenforsch Darmstadt, Planckstr 1, D-64291 Darmstadt, Germany
关键词
hydrodynamic instabilities; Rayleigh-Taylor instability; high energy density physics; ELASTIC-PLASTIC SOLIDS; NUMERICAL SIMULATIONS; HIGH-PRESSURE; GROWTH; VISCOSITY;
D O I
10.1088/0143-0807/38/1/015003
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A linear study of the Rayleigh-Taylor instability based on momentum conservation and the consideration of an irrotational velocity field for incompressible perturbations is discussed. The theory allows for a very appealing physical picture and for a relatively simple description of the main features of the instability. As a result, it is suitable for the study of the very complex problem of the instability of accelerated solids with non-linear elastic-plastic constitutive properties, which cannot be studied by the usual normal modes approach. The elastic to plastic transition occurring early in the instability process determines the entire evolution and makes the instability exhibit behavior that cannot be captured by an asymptotic analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Compressible, In viscid Rayleigh-Taylor Instability
    Guo, Yan
    Tice, Ian
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 677 - 711
  • [22] The Rayleigh-Taylor instability in a porous medium
    Forbes, Lawrence K.
    Browne, Catherine A.
    Walters, Stephen J.
    SN APPLIED SCIENCES, 2021, 3 (02):
  • [23] Rayleigh-Taylor instability with gravity reversal
    Livescu, D.
    Wei, T.
    Brady, P. T.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 417
  • [24] Rayleigh-Taylor Instability with General Rotation and Surface Tension in Porous Media
    Hoshoudy, G. A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (04) : 621 - 633
  • [25] Surface Tension Effect on Harmonics of Rayleigh-Taylor Instability
    Liu, Wan-hai
    Wang, Xiang
    Ma, Wen-fang
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2018, 31 (01) : 39 - 44
  • [26] Viscous Rayleigh-Taylor instability with and without diffusion effect
    Xie, Chenyue
    Tao, Jianjun
    Li, Ji
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2017, 38 (02) : 263 - 270
  • [27] Discrete particle modeling of granular Rayleigh-Taylor instability
    Yu, Z. Y.
    Wu, C. L.
    Berrouk, A. S.
    Nandakumar, K.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 77 : 260 - 270
  • [28] Numerical simulations of Rayleigh-Taylor instability in elastic solids
    Lopez Cela, J. J.
    Piriz, A. R.
    Serna Moreno, M. C.
    Tahir, N. A.
    LASER AND PARTICLE BEAMS, 2006, 24 (03) : 427 - 435
  • [29] Derivation of energy gradient function for Rayleigh-Taylor instability
    Farahbakhsh, Iman
    Dou, Hua-Shu
    FLUID DYNAMICS RESEARCH, 2018, 50 (04)
  • [30] Inferring the Magnetic Field from the Rayleigh-Taylor Instability
    Grea, Benoit-Joseph
    Briard, Antoine
    ASTROPHYSICAL JOURNAL, 2023, 958 (02)