Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

被引:20
作者
Engebretsen, Erik [1 ]
Hinds, Gareth [2 ]
Meyer, Quentin [1 ]
Mason, Tom [1 ]
Brightman, Edward [2 ]
Castanheira, Luis [2 ]
Shearing, Paul R. [1 ]
Brett, Daniel J. L. [1 ]
机构
[1] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[2] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
Polymer electrolyte fuel cell; Localised electrochemical impedance spectroscopy; Reference electrode; Membrane resistance transients; Water management; Entrance length; PROTON-EXCHANGE MEMBRANE; CATALYST LAYER; COLD START; RELATIVE-HUMIDITY; INTERNAL BEHAVIOR; PERFORMANCE; FLOW; TEMPERATURE; CIRCUIT; CHANNEL;
D O I
10.1016/j.jpowsour.2018.02.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after similar to 250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 52 条
[1]  
Balabajew M., ELECTROCHIMICA ACTA
[2]   Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells [J].
Bender, G ;
Wilson, MS ;
Zawodzinski, TA .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :163-171
[3]   Membrane resistance and current distribution measurements under various operating conditions in a polymer electrolyte fuel cell [J].
Brett, D. J. L. ;
Atkins, S. ;
Brandon, N. P. ;
Vasileiadis, N. ;
Vesovic, V. ;
Kucernak, A. R. .
JOURNAL OF POWER SOURCES, 2007, 172 (01) :2-13
[4]   What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance [J].
Brett, Daniel J. L. ;
Kucernak, Anthony R. ;
Aguiar, Patricia ;
Atkins, Stephen C. ;
Brandon, Nigel P. ;
Clague, Ralph ;
Cohen, Lesley F. ;
Hinds, Gareth ;
Kalyvas, Christos ;
Offer, Gregory J. ;
Ladewig, Bradley ;
Maher, Robert ;
Marquis, Andrew ;
Shearing, Paul ;
Vasileiadis, Nikos ;
Vesovic, Velisa .
CHEMPHYSCHEM, 2010, 11 (13) :2714-2731
[5]   Localized impedance measurements along a single channel of a solid polymer fuel cell [J].
Brett, DJL ;
Atkins, S ;
Brandon, NP ;
Vesovic, V ;
Vasileiadis, N ;
Kucernak, A .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (04) :A63-A66
[6]   Measurement of the current distribution along a single flow channel of a solid polymer fuel cell [J].
Brett, DJL ;
Atkins, S ;
Brandon, NP ;
Vesovic, V ;
Vasileiadis, N ;
Kucernak, AR .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :628-632
[7]   In situ mapping of potential transients during start-up and shut-down of a polymer electrolyte membrane fuel cell [J].
Brightman, E. ;
Hinds, G. .
JOURNAL OF POWER SOURCES, 2014, 267 :160-170
[8]   LOCAL MASS-TRANSPORT EFFECTS IN THE FMOI LABORATORY ELECTROLYZER [J].
BROWN, CJ ;
PLETCHER, D ;
WALSH, FC ;
HAMMOND, JK ;
ROBINSON, D .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1992, 22 (07) :613-619
[9]   A printed circuit board approach to measuring current distribution in a fuel cell [J].
Cleghorn, SJC ;
Derouin, CR ;
Wilson, MS ;
Gottesfeld, S .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (07) :663-672
[10]   Electrochemical impedance study on estimating the mass transport resistance in the polymer electrolyte fuel cell cathode catalyst layer [J].
Cruz-Manzo, Samuel ;
Chen, Rui .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 702 :45-48