Retinal Vessel Classification Technique

被引:0
|
作者
Rotaru, Florin [1 ]
Bejinariu, Silviu-Ioan [1 ]
Nita, Cristina Diana [1 ]
Luca, Ramona [1 ]
Luca, Mihaela [1 ]
Ciobanu, Adrian [1 ]
机构
[1] Romanian Acad, Iasi Branch, Inst Comp Sci, Iasi, Romania
来源
SOFT COMPUTING APPLICATIONS, SOFA 2016, VOL 2 | 2018年 / 634卷
关键词
Retinal images; Vessel graph; Graph edge labelling; ARTERIES; VEINS;
D O I
10.1007/978-3-319-62524-9_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A retinal vessel classification procedure is proposed. From the image of thinned vessel network, landmarks are extracted and classified as branching, crossover and end points. Then a vascular graph is generated. Using a stratified graph edge labeling procedure the artery/vein map is built. In a first step the graph branches near the optic disc are localized and classified. Each label is propagated along the most significant segments linked to initial vessels. The next labeling phase aims the not processed branches starting from already classified vessels. Only branches and edges at crossings are labeled. Finally, using the current labels set, the uncertain cases are solved.
引用
收藏
页码:498 / 514
页数:17
相关论文
共 50 条
  • [21] Blood vessel segmentation methodologies in retinal images - A survey
    Fraz, M. M.
    Remagnino, P.
    Hoppe, A.
    Uyyanonvara, B.
    Rudnicka, A. R.
    Owen, C. G.
    Barman, S. A.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) : 407 - 433
  • [22] Retinal Blood Vessel Segmentation via Graph Cut
    Salazar-Gonzalez, Ana G.
    Li, Yongmin
    Liu, Xiaohui
    11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 225 - 230
  • [23] A Survey on Blood Vessel Segmentation Methods in Retinal Images
    Singh, Navdeep
    Kaur, Lakhwinder
    2015 INTERNATIONAL CONFERENCE ON ELECTRONIC DESIGN, COMPUTER NETWORKS & AUTOMATED VERIFICATION (EDCAV), 2015, : 23 - 28
  • [24] Automated Retinal Vessel Recognition and Measurements on Large Datasets
    Welikala, R. A.
    Fraz, M. M.
    Hayat, S.
    Rudnicka, A. R.
    Foster, P. J.
    Whincup, P. H.
    Owen, C. G.
    Strachan, D. P.
    Barman, S. A.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 5239 - 5242
  • [25] Fast, accurate and robust retinal vessel segmentation system
    Jiang, Zhexin
    Yepez, Juan
    An, Sen
    Ko, Seokbum
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2017, 37 (03) : 412 - 421
  • [26] PCA-Based Retinal Vessel Tortuosity Quantification
    Turior, Rashmi
    Onkaew, Danu
    Uyyanonvara, Bunyarit
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (02) : 329 - 339
  • [27] An automatic blood vessel segmentation method for retinal images
    Zhang, Jingdan
    Wang, Le
    Cui, Yingjie
    Jiang, Wuhan
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS, ROBOTICS AND AUTOMATION (ICMRA 2015), 2015, 15 : 256 - 259
  • [28] Correlation Between Retinal Vessel Diameters and Uveitis Activity
    Zicarelli, Federico
    Agarwal, Aniruddha
    Rizzi, Chiara
    Oldani, Marta
    Staurenghi, Giovanni
    Invernizzi, Alessandro
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (03)
  • [29] Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification
    Roychowdhury, Sohini
    Koozekanani, Dara D.
    Parhi, Keshab K.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) : 1118 - 1128
  • [30] Improving retinal artery and vein classification by means of a minimal path approach
    S. G. Vázquez
    B. Cancela
    N. Barreira
    M. G. Penedo
    M. Rodríguez-Blanco
    M. Pena Seijo
    G. Coll de Tuero
    M. A. Barceló
    M. Saez
    Machine Vision and Applications, 2013, 24 : 919 - 930