CASR: a context-aware residual network for single-image super-resolution

被引:11
|
作者
Wu, Yirui [1 ,2 ]
Ji, Xiaozhong [2 ]
Ji, Wanting [3 ]
Tian, Yan [4 ]
Zhou, Helen [5 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[2] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Peoples R China
[3] Massey Univ, Sch Nat & Computat Sci, Auckland, New Zealand
[4] Zhejiang Gongshang Univ, Hangzhou, Peoples R China
[5] Manukau Inst Technol, Sch Engn, Auckland, New Zealand
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 18期
基金
国家重点研发计划;
关键词
Context-aware residual network; Channel and spatial attention scheme; Inception block; Single-image super-resolution; COMPUTATION OFFLOADING METHOD; SERVICE RECOMMENDATION; CONVOLUTIONAL NETWORK; PRIVACY PRESERVATION;
D O I
10.1007/s00521-019-04609-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the significant power of deep learning architectures, researchers have made much progress on super-resolution in the past few years. However, due to low representational ability of feature maps extracted from nature scene images, directly applying deep learning architectures for super-resolution could result in poor visual effects. Essentially, unique characteristics like low-frequency information should be emphasized for better shape reconstruction, other than treated equally across different patches and channels. To ease this problem, we propose a lightweight context-aware deep residual network named as CASR network, which appropriately encodes channel and spatial attention information to construct context-aware feature map for single-image super-resolution. We firstly design a task-specified inception block with a novel structure of astrous filters and specially chosen kernel size to extract multi-level information from low-resolution images. Then, a Dual-Attention ResNet module is applied to capture context information by dually connecting spatial and channel attention schemes. With high representational ability of context-aware feature map, CASR can accurately and efficiently generate high-resolution images. Experiments on several popular datasets show the proposed method has achieved better visual improvements and superior efficiencies than most of the existing studies.
引用
收藏
页码:14533 / 14548
页数:16
相关论文
共 50 条
  • [41] Adaptive deep residual network for single image super-resolution
    Liu, Shuai
    Gang, Ruipeng
    Li, Chenghua
    Song, Ruixia
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (04) : 391 - 401
  • [42] Multiple Residual Learning Network for Single Image Super-Resolution
    Liu, Renhe
    Li, Sumei
    Hou, Chunping
    Lei, Guoqing
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [43] Adaptive deep residual network for single image super-resolution
    Shuai Liu
    Ruipeng Gang
    Chenghua Li
    Ruixia Song
    Computational Visual Media, 2019, 5 : 391 - 401
  • [44] Efficient residual attention network for single image super-resolution
    Hao, Fangwei
    Zhang, Taiping
    Zhao, Linchang
    Tang, Yuanyan
    APPLIED INTELLIGENCE, 2022, 52 (01) : 652 - 661
  • [45] Lightweight blueprint residual network for single image super-resolution
    Hao, Fangwei
    Wu, Jiesheng
    Liang, Weiyun
    Xu, Jing
    Li, Ping
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [46] Deep Residual Dense Network for Single Image Super-Resolution
    Musunuri, Yogendra Rao
    Kwon, Oh-Seol
    ELECTRONICS, 2021, 10 (05) : 1 - 15
  • [47] Channel Hourglass Residual Network For Single Image Super-Resolution
    Hao, Fangwei
    Ma, Xindi
    Zhang, Taiping
    Tang, Yuanyan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [48] A Content Dependent Kernel For Single-Image Super-Resolution
    Saryazdi, Saman
    Saryazdi, Saeid
    Nezanabadipour, Hossein
    2013 5TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2013, : 453 - 456
  • [49] PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION
    Wang, Guangcheng
    Li, Leida
    Li, Qiaohong
    Gu, Ke
    Lu, Zhaolin
    Qian, Jiansheng
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3145 - 3149
  • [50] Single-Image Super-Resolution Using Multihypothesis Prediction
    Chen, Chen
    Fowler, James E.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 608 - 612